Genetic algorithm and particle swarm optimization combined with Powell method

Bibliographic Details
Main Author: Bento, David
Publication Date: 2013
Other Authors: Pinho, Diana, Pereira, Ana I., Lima, Rui Alberto Madeira Macedo
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/63760
Summary: In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.
id RCAP_4e43ec168d17b0ca271871d77b94461b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/63760
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Genetic algorithm and particle swarm optimization combined with Powell methodGenetic AlgorithmGlobal OptimizationLocal OptimizationIn recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.(undefined)AIP PublishingUniversidade do MinhoBento, DavidPinho, DianaPereira, Ana I.Lima, Rui Alberto Madeira Macedo20132013-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/63760eng97807354118450094-243X1551-761610.1063/1.4825557https://aip.scitation.org/doi/abs/10.1063/1.4825557info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:41:20Zoai:repositorium.sdum.uminho.pt:1822/63760Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:26:38.931280Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Genetic algorithm and particle swarm optimization combined with Powell method
title Genetic algorithm and particle swarm optimization combined with Powell method
spellingShingle Genetic algorithm and particle swarm optimization combined with Powell method
Bento, David
Genetic Algorithm
Global Optimization
Local Optimization
title_short Genetic algorithm and particle swarm optimization combined with Powell method
title_full Genetic algorithm and particle swarm optimization combined with Powell method
title_fullStr Genetic algorithm and particle swarm optimization combined with Powell method
title_full_unstemmed Genetic algorithm and particle swarm optimization combined with Powell method
title_sort Genetic algorithm and particle swarm optimization combined with Powell method
author Bento, David
author_facet Bento, David
Pinho, Diana
Pereira, Ana I.
Lima, Rui Alberto Madeira Macedo
author_role author
author2 Pinho, Diana
Pereira, Ana I.
Lima, Rui Alberto Madeira Macedo
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Bento, David
Pinho, Diana
Pereira, Ana I.
Lima, Rui Alberto Madeira Macedo
dc.subject.por.fl_str_mv Genetic Algorithm
Global Optimization
Local Optimization
topic Genetic Algorithm
Global Optimization
Local Optimization
description In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.
publishDate 2013
dc.date.none.fl_str_mv 2013
2013-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/63760
url http://hdl.handle.net/1822/63760
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9780735411845
0094-243X
1551-7616
10.1063/1.4825557
https://aip.scitation.org/doi/abs/10.1063/1.4825557
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv AIP Publishing
publisher.none.fl_str_mv AIP Publishing
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595319049256960