Genetic algorithm and particle swarm optimization combined with Powell method
Main Author: | |
---|---|
Publication Date: | 2013 |
Other Authors: | , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/63760 |
Summary: | In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context. |
id |
RCAP_4e43ec168d17b0ca271871d77b94461b |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/63760 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Genetic algorithm and particle swarm optimization combined with Powell methodGenetic AlgorithmGlobal OptimizationLocal OptimizationIn recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.(undefined)AIP PublishingUniversidade do MinhoBento, DavidPinho, DianaPereira, Ana I.Lima, Rui Alberto Madeira Macedo20132013-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/63760eng97807354118450094-243X1551-761610.1063/1.4825557https://aip.scitation.org/doi/abs/10.1063/1.4825557info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:41:20Zoai:repositorium.sdum.uminho.pt:1822/63760Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:26:38.931280Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Genetic algorithm and particle swarm optimization combined with Powell method |
title |
Genetic algorithm and particle swarm optimization combined with Powell method |
spellingShingle |
Genetic algorithm and particle swarm optimization combined with Powell method Bento, David Genetic Algorithm Global Optimization Local Optimization |
title_short |
Genetic algorithm and particle swarm optimization combined with Powell method |
title_full |
Genetic algorithm and particle swarm optimization combined with Powell method |
title_fullStr |
Genetic algorithm and particle swarm optimization combined with Powell method |
title_full_unstemmed |
Genetic algorithm and particle swarm optimization combined with Powell method |
title_sort |
Genetic algorithm and particle swarm optimization combined with Powell method |
author |
Bento, David |
author_facet |
Bento, David Pinho, Diana Pereira, Ana I. Lima, Rui Alberto Madeira Macedo |
author_role |
author |
author2 |
Pinho, Diana Pereira, Ana I. Lima, Rui Alberto Madeira Macedo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Bento, David Pinho, Diana Pereira, Ana I. Lima, Rui Alberto Madeira Macedo |
dc.subject.por.fl_str_mv |
Genetic Algorithm Global Optimization Local Optimization |
topic |
Genetic Algorithm Global Optimization Local Optimization |
description |
In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/63760 |
url |
http://hdl.handle.net/1822/63760 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
9780735411845 0094-243X 1551-7616 10.1063/1.4825557 https://aip.scitation.org/doi/abs/10.1063/1.4825557 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
AIP Publishing |
publisher.none.fl_str_mv |
AIP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595319049256960 |