Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices

Bibliographic Details
Main Author: Pereira, E.
Publication Date: 2001
Other Authors: Vitória, J.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/4645
https://doi.org/10.1016/S0898-1221(01)00231-0
Summary: A method for computing a complete set of block eigenvalues for a block partitioned matrix using a generalized form of Wielandt's deflation is presented. An application of this process is given to compute a complete set of solvents of matrix polynomials where the coefficients and the variable are commuting matrices.
id RCAP_4d81f916755f18869e3ca4e102cd7e7a
oai_identifier_str oai:estudogeral.uc.pt:10316/4645
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matricesBlock eigenvalues deflationMatrix polynomialsA method for computing a complete set of block eigenvalues for a block partitioned matrix using a generalized form of Wielandt's deflation is presented. An application of this process is given to compute a complete set of solvents of matrix polynomials where the coefficients and the variable are commuting matrices.http://www.sciencedirect.com/science/article/B6TYJ-444G6J6-H/1/c3a6cac92904c18a24a2d28ebf602b0f2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttps://hdl.handle.net/10316/4645https://hdl.handle.net/10316/4645https://doi.org/10.1016/S0898-1221(01)00231-0engComputers & Mathematics with Applications. 42:8-9 (2001) 1177-1188Pereira, E.Vitória, J.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-11-06T16:59:53Zoai:estudogeral.uc.pt:10316/4645Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:13.521930Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
title Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
spellingShingle Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
Pereira, E.
Block eigenvalues deflation
Matrix polynomials
title_short Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
title_full Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
title_fullStr Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
title_full_unstemmed Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
title_sort Deflation for block eigenvalues of block partitioned matrices with an application to matrix polynomials of commuting matrices
author Pereira, E.
author_facet Pereira, E.
Vitória, J.
author_role author
author2 Vitória, J.
author2_role author
dc.contributor.author.fl_str_mv Pereira, E.
Vitória, J.
dc.subject.por.fl_str_mv Block eigenvalues deflation
Matrix polynomials
topic Block eigenvalues deflation
Matrix polynomials
description A method for computing a complete set of block eigenvalues for a block partitioned matrix using a generalized form of Wielandt's deflation is presented. An application of this process is given to compute a complete set of solvents of matrix polynomials where the coefficients and the variable are commuting matrices.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/4645
https://hdl.handle.net/10316/4645
https://doi.org/10.1016/S0898-1221(01)00231-0
url https://hdl.handle.net/10316/4645
https://doi.org/10.1016/S0898-1221(01)00231-0
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computers & Mathematics with Applications. 42:8-9 (2001) 1177-1188
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602338240069632