Nowcasting inflation expectations using twitter
Main Author: | |
---|---|
Publication Date: | 2023 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/173357 |
Summary: | This study explores the potential of Twitter to forecast inflation expectations through various machine learning models. Twitter-based measures of inflation were shown to be correlated with survey-based inflation expectations. No single regression model was consistently superior, although PCA-Ridge appears to be appropriate. The study also unveiled potential issues with data cleaning, model overfitting, and limitations in available data. These findings advance the understanding of economic forecasting using unconventional data sources, opening pathways for future research. |
id |
RCAP_4be5162ff34b6e5869cdf315842fa44e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/173357 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Nowcasting inflation expectations using twitterNowcastingTwitterInflation expectationsDynamic topic modellingCEMS MIMDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis study explores the potential of Twitter to forecast inflation expectations through various machine learning models. Twitter-based measures of inflation were shown to be correlated with survey-based inflation expectations. No single regression model was consistently superior, although PCA-Ridge appears to be appropriate. The study also unveiled potential issues with data cleaning, model overfitting, and limitations in available data. These findings advance the understanding of economic forecasting using unconventional data sources, opening pathways for future research.Han, QiweiRUNGorham, Nicholas2023-07-052023-06-192029-06-19T00:00:00Z2023-07-05T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/173357TID:203366670enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-14T01:41:29Zoai:run.unl.pt:10362/173357Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:59:06.422058Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Nowcasting inflation expectations using twitter |
title |
Nowcasting inflation expectations using twitter |
spellingShingle |
Nowcasting inflation expectations using twitter Gorham, Nicholas Nowcasting Inflation expectations Dynamic topic modelling CEMS MIM Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Nowcasting inflation expectations using twitter |
title_full |
Nowcasting inflation expectations using twitter |
title_fullStr |
Nowcasting inflation expectations using twitter |
title_full_unstemmed |
Nowcasting inflation expectations using twitter |
title_sort |
Nowcasting inflation expectations using twitter |
author |
Gorham, Nicholas |
author_facet |
Gorham, Nicholas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei RUN |
dc.contributor.author.fl_str_mv |
Gorham, Nicholas |
dc.subject.por.fl_str_mv |
Nowcasting Inflation expectations Dynamic topic modelling CEMS MIM Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Nowcasting Inflation expectations Dynamic topic modelling CEMS MIM Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This study explores the potential of Twitter to forecast inflation expectations through various machine learning models. Twitter-based measures of inflation were shown to be correlated with survey-based inflation expectations. No single regression model was consistently superior, although PCA-Ridge appears to be appropriate. The study also unveiled potential issues with data cleaning, model overfitting, and limitations in available data. These findings advance the understanding of economic forecasting using unconventional data sources, opening pathways for future research. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-05 2023-06-19 2023-07-05T00:00:00Z 2029-06-19T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/173357 TID:203366670 |
url |
http://hdl.handle.net/10362/173357 |
identifier_str_mv |
TID:203366670 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597796853219328 |