Maximum distance separable 2D convolutional codes

Bibliographic Details
Main Author: Climent, J.-J.
Publication Date: 2016
Other Authors: Napp, D., Perea, C., Pinto, Raquel
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/15106
Summary: Maximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate $k/n$ and degree $delta $ , which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate $k/n$ and degree $delta $ that reach such bound when $n geq k (({(lfloor ({delta }/{k}) rfloor + 2)(lfloor ({delta }/{k}) rfloor + 3)})/{2})$ if $k {nmid } delta $ , or $n geq k (({(({delta }/{k}) + 1)(({delta }/{k}) + 2)})/{2})$ if $k mid delta $ , by presenting a concrete constructive procedure.
id RCAP_4a0016c4b71f471fdb2bea32782a6af8
oai_identifier_str oai:ria.ua.pt:10773/15106
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Maximum distance separable 2D convolutional codes2D convolutional codeCirculant Cauchy matrixGeneralized Singleton boundMaximum distance separable codeSuperregular matrixMaximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate $k/n$ and degree $delta $ , which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate $k/n$ and degree $delta $ that reach such bound when $n geq k (({(lfloor ({delta }/{k}) rfloor + 2)(lfloor ({delta }/{k}) rfloor + 3)})/{2})$ if $k {nmid } delta $ , or $n geq k (({(({delta }/{k}) + 1)(({delta }/{k}) + 2)})/{2})$ if $k mid delta $ , by presenting a concrete constructive procedure.IEEE2016-01-21T17:10:52Z2016-02-01T00:00:00Z2016-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15106eng0018-944810.1109/TIT.2015.2509075Climent, J.-J.Napp, D.Perea, C.Pinto, Raquelinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:01Zoai:ria.ua.pt:10773/15106Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:51:26.333777Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Maximum distance separable 2D convolutional codes
title Maximum distance separable 2D convolutional codes
spellingShingle Maximum distance separable 2D convolutional codes
Climent, J.-J.
2D convolutional code
Circulant Cauchy matrix
Generalized Singleton bound
Maximum distance separable code
Superregular matrix
title_short Maximum distance separable 2D convolutional codes
title_full Maximum distance separable 2D convolutional codes
title_fullStr Maximum distance separable 2D convolutional codes
title_full_unstemmed Maximum distance separable 2D convolutional codes
title_sort Maximum distance separable 2D convolutional codes
author Climent, J.-J.
author_facet Climent, J.-J.
Napp, D.
Perea, C.
Pinto, Raquel
author_role author
author2 Napp, D.
Perea, C.
Pinto, Raquel
author2_role author
author
author
dc.contributor.author.fl_str_mv Climent, J.-J.
Napp, D.
Perea, C.
Pinto, Raquel
dc.subject.por.fl_str_mv 2D convolutional code
Circulant Cauchy matrix
Generalized Singleton bound
Maximum distance separable code
Superregular matrix
topic 2D convolutional code
Circulant Cauchy matrix
Generalized Singleton bound
Maximum distance separable code
Superregular matrix
description Maximum distance separable (MDS) block codes and MDS 1D convolutional codes are the most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of a certain rate and degree, respectively. In this paper, we generalize this concept to the class of 2D convolutional codes. For that, we introduce a natural bound on the distance of a 2D convolutional code of rate $k/n$ and degree $delta $ , which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D convolutional codes. Then, we prove the existence of 2D convolutional codes of rate $k/n$ and degree $delta $ that reach such bound when $n geq k (({(lfloor ({delta }/{k}) rfloor + 2)(lfloor ({delta }/{k}) rfloor + 3)})/{2})$ if $k {nmid } delta $ , or $n geq k (({(({delta }/{k}) + 1)(({delta }/{k}) + 2)})/{2})$ if $k mid delta $ , by presenting a concrete constructive procedure.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-21T17:10:52Z
2016-02-01T00:00:00Z
2016-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15106
url http://hdl.handle.net/10773/15106
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0018-9448
10.1109/TIT.2015.2509075
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594134401646592