Geodesic length spectrum on compact Riemann surfaces
Main Author: | |
---|---|
Publication Date: | 2010 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10174/6775 |
Summary: | In this paper we use techniques linking combinatorial structures (symbolic dynamics) and algebraic-geometric structures to study the variation of the geodesic length spectrum, with the Fenchel-Nielsen coordinates, which parametrize the surface of genus τ = 2. We explicitly compute length spectra, for all closed orientable hyperbolic genus two surfaces, identifying the exponential growth rate and the first terms of growth series. |
id |
RCAP_49ed71c83e1b6de95d7f7fef8a1edb71 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/6775 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Geodesic length spectrum on compact Riemann surfacesgeodesicIn this paper we use techniques linking combinatorial structures (symbolic dynamics) and algebraic-geometric structures to study the variation of the geodesic length spectrum, with the Fenchel-Nielsen coordinates, which parametrize the surface of genus τ = 2. We explicitly compute length spectra, for all closed orientable hyperbolic genus two surfaces, identifying the exponential growth rate and the first terms of growth series.Journal of Geometry and Physics2012-12-10T12:39:33Z2012-12-102010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/6775http://hdl.handle.net/10174/6775engClara Grácio e J. Sousa Ramos , “Geodesic length spectrum on compact Riemann surfaces”, Journal of Geometry and Physics, 60, pgs 1643-1655, 2010.mgraciond721Grácio, ClaraRamos, José Sousainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T18:46:22Zoai:dspace.uevora.pt:10174/6775Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:56:19.727779Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Geodesic length spectrum on compact Riemann surfaces |
title |
Geodesic length spectrum on compact Riemann surfaces |
spellingShingle |
Geodesic length spectrum on compact Riemann surfaces Grácio, Clara geodesic |
title_short |
Geodesic length spectrum on compact Riemann surfaces |
title_full |
Geodesic length spectrum on compact Riemann surfaces |
title_fullStr |
Geodesic length spectrum on compact Riemann surfaces |
title_full_unstemmed |
Geodesic length spectrum on compact Riemann surfaces |
title_sort |
Geodesic length spectrum on compact Riemann surfaces |
author |
Grácio, Clara |
author_facet |
Grácio, Clara Ramos, José Sousa |
author_role |
author |
author2 |
Ramos, José Sousa |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Grácio, Clara Ramos, José Sousa |
dc.subject.por.fl_str_mv |
geodesic |
topic |
geodesic |
description |
In this paper we use techniques linking combinatorial structures (symbolic dynamics) and algebraic-geometric structures to study the variation of the geodesic length spectrum, with the Fenchel-Nielsen coordinates, which parametrize the surface of genus τ = 2. We explicitly compute length spectra, for all closed orientable hyperbolic genus two surfaces, identifying the exponential growth rate and the first terms of growth series. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01-01T00:00:00Z 2012-12-10T12:39:33Z 2012-12-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/6775 http://hdl.handle.net/10174/6775 |
url |
http://hdl.handle.net/10174/6775 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Clara Grácio e J. Sousa Ramos , “Geodesic length spectrum on compact Riemann surfaces”, Journal of Geometry and Physics, 60, pgs 1643-1655, 2010. mgracio nd 721 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Journal of Geometry and Physics |
publisher.none.fl_str_mv |
Journal of Geometry and Physics |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592364262752256 |