Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications

Bibliographic Details
Main Author: Pena, Gonçalo
Publication Date: 2009
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/115435
https://doi.org/10.5075/epfl-thesis-4529
Summary: In this thesis we address the numerical approximation of the incompressible NavierStokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic tools to perform spectral discretizations of the Galerkin or Galerkin with Numerical Integration (G-NI) type. We cover a large range of possibilities regarding the reference elements, basis functions, interpolation points and quadrature points. In this approach, the integration and differentiation of the polynomial functions is done numerically through the help of suitable point sets. Regarding the differentiation, we present a detailed numerical study of which points should be used to attain better stability (among the choices we present). Second, we introduce the incompressible steady/unsteady Stokes and Navier-Stokes equations and their spectral approximation. In the unsteady case, we introduce a combination of Backward Differentiation Formulas and an extrapolation formula of the same order for the time integration. Once the equations are discretized, a linear system must be solved to obtain the approximate solution. In this context, we consider the solution of the whole system of equations combined with a block type preconditioner. The preconditioner is shown to be optimal in terms of number of iterations used by the GMRES method in the steady case, but not in the unsteady one. Another alternative presented is to use algebraic factorization methods of the Yosida type and decouple the calculation of velocity and pressure. A benchmark is also presented to access the numerical convergence properties of this type of methods in our context. Third, we extend the algorithms developed in the fixed domain case to the Arbitrary Lagrangian Eulerian framework. The issue of defining a high order ALE map is addressed. This allows to construct a computational domain that is described with curved elements. A benchmark using a direct method to solve the linear system or the Yosida-q methods is presented to show the convergence orders of the method proposed. Finally, we apply the developed method with an implicit fully coupled and semi-implicit approach, to solve a fluid-structure interaction problem for a simple 2D hemodynamics example.
id RCAP_48612046aa9be3a014e65240157d70d9
oai_identifier_str oai:estudogeral.uc.pt:10316/115435
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and ApplicationsSpectral element methodIncompressible Navier-Stokes equationsPreconditioningAlgebraic factorization methodFluid-structure interactionHemodynamicsIn this thesis we address the numerical approximation of the incompressible NavierStokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic tools to perform spectral discretizations of the Galerkin or Galerkin with Numerical Integration (G-NI) type. We cover a large range of possibilities regarding the reference elements, basis functions, interpolation points and quadrature points. In this approach, the integration and differentiation of the polynomial functions is done numerically through the help of suitable point sets. Regarding the differentiation, we present a detailed numerical study of which points should be used to attain better stability (among the choices we present). Second, we introduce the incompressible steady/unsteady Stokes and Navier-Stokes equations and their spectral approximation. In the unsteady case, we introduce a combination of Backward Differentiation Formulas and an extrapolation formula of the same order for the time integration. Once the equations are discretized, a linear system must be solved to obtain the approximate solution. In this context, we consider the solution of the whole system of equations combined with a block type preconditioner. The preconditioner is shown to be optimal in terms of number of iterations used by the GMRES method in the steady case, but not in the unsteady one. Another alternative presented is to use algebraic factorization methods of the Yosida type and decouple the calculation of velocity and pressure. A benchmark is also presented to access the numerical convergence properties of this type of methods in our context. Third, we extend the algorithms developed in the fixed domain case to the Arbitrary Lagrangian Eulerian framework. The issue of defining a high order ALE map is addressed. This allows to construct a computational domain that is described with curved elements. A benchmark using a direct method to solve the linear system or the Yosida-q methods is presented to show the convergence orders of the method proposed. Finally, we apply the developed method with an implicit fully coupled and semi-implicit approach, to solve a fluid-structure interaction problem for a simple 2D hemodynamics example.Dans cette th`ese nous nous int´eressons `a l’approximation num´erique des ´equations incompressibles de Navier-Stokes ´evoluant dans un domaine en mouvement par la m´ethode des ´el´ements spectraux et des int´egrateurs en temps d’ordre ´elev´e. Dans une premi`ere phase, nous pr´esentons la m´ethode des ´el´ements spectraux et les outils de base pour effectuer des discr´etisations spectrales du type Galerkin ou Galerkin avec int´egration num´erique (G-NI). Nous couvrons un large ´eventail de possibilit´es concernant les ´el´ements de reference, fonctions de base, points d’interpolation et points de quadrature. Dans cette approche, l’int´egration et la diff´erentiation des fonctions polynomiales est faite num´eriquement grˆace `a l’aide d’ensembles de points convenables. En ce qui concerne la diff´erenciation, nous pr´esentons une ´etude num´erique des points qui doivent ˆetre utilis´es pour atteindre une meilleure stabilit´e num´erique (parmi les choix que nous avons actuellement). Deuxi`emement, nous introduisons les ´equations incompressibles stationnaires et nonstationnaires de Stokes et de Navier-Stokes et son approximation spectrale. Dans le cas non-stationnaire, nous introduisons une combinaison de la m´ethode Backward Differentiation Formula (BDF) et une formule d’extrapolation du mˆeme ordre pour l’int´egration par rapport au temps. Une fois les ´equations discr´etis´ees, un syst`eme lin´eaire doit ˆetre r´esolu pour obtenir la solution approch´ee. Dans ce contexte, nous r´esolvons ce syst`eme avec un pr´econditionneur par blocs. Nous montrons que le pr´econditionneur est optimal par rapport au nombre d’it´erations utilis´ees par la m´ethode GMRES dans le cas stationnaire, mais pas dans le cas non-stationnaire. Une autre alternative est d’utiliser les m´ethodes de factorization algebrique de type Yosida et separer le calcul de la vitesse et de la pression. Un cas test est pr´esent´e pour determiner les propriet´es de convergence de ce type de m´ethodes dans notre contexte. Troisi`emement, nous ´etendons les algorithmes d´evelopp´es dans le cas o`u le domaine est fix´e au cadre de la formulation Arbitraire Lagrange-Euler (ALE). La question de la d´efinition d’une carte ALE d’ordre ´elev´e est abord´ee. Cela permet de construire un domaine de calcul qui est d´ecrit avec des ´el´ements courbes. Un cas test utilisant une m´ethode directe et les m´ethodes Yosida-q pour r´esoudre le syst`eme lin´eaire est pr´esent´e pour montrer les ordres de convergence de la m´ethode propos´ee. Finalement, nous appliquons la m´ethode d´evelopp´ee pour r´esoudre une un probl`eme d’interaction fluide-structure pour un exemple simple bidimensionnel d’h´emodynamique. Nous consid´erons deux approches: une implicite enti`erement coupl´ee et une semi-implicite.2F19-91D3-6B32 | Gonçalo Nuno Travassos Borges Alves da PenaN/AÉcole Polytechnique Fédérale de Lausanne2009-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://hdl.handle.net/10316/115435https://hdl.handle.net/10316/115435https://doi.org/10.5075/epfl-thesis-4529engcv-prod-3621180urn:nbn:ch:bel-epfl-thesis4529-3Pena, Gonçaloinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-06-05T09:59:56Zoai:estudogeral.uc.pt:10316/115435Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:08:57.641560Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
title Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
spellingShingle Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
Pena, Gonçalo
Spectral element method
Incompressible Navier-Stokes equations
Preconditioning
Algebraic factorization method
Fluid-structure interaction
Hemodynamics
title_short Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
title_full Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
title_fullStr Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
title_full_unstemmed Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
title_sort Spectral Element Approximation of the Incompressible Navier-stokes Equations in a Moving Domain and Applications
author Pena, Gonçalo
author_facet Pena, Gonçalo
author_role author
dc.contributor.author.fl_str_mv Pena, Gonçalo
dc.subject.por.fl_str_mv Spectral element method
Incompressible Navier-Stokes equations
Preconditioning
Algebraic factorization method
Fluid-structure interaction
Hemodynamics
topic Spectral element method
Incompressible Navier-Stokes equations
Preconditioning
Algebraic factorization method
Fluid-structure interaction
Hemodynamics
description In this thesis we address the numerical approximation of the incompressible NavierStokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic tools to perform spectral discretizations of the Galerkin or Galerkin with Numerical Integration (G-NI) type. We cover a large range of possibilities regarding the reference elements, basis functions, interpolation points and quadrature points. In this approach, the integration and differentiation of the polynomial functions is done numerically through the help of suitable point sets. Regarding the differentiation, we present a detailed numerical study of which points should be used to attain better stability (among the choices we present). Second, we introduce the incompressible steady/unsteady Stokes and Navier-Stokes equations and their spectral approximation. In the unsteady case, we introduce a combination of Backward Differentiation Formulas and an extrapolation formula of the same order for the time integration. Once the equations are discretized, a linear system must be solved to obtain the approximate solution. In this context, we consider the solution of the whole system of equations combined with a block type preconditioner. The preconditioner is shown to be optimal in terms of number of iterations used by the GMRES method in the steady case, but not in the unsteady one. Another alternative presented is to use algebraic factorization methods of the Yosida type and decouple the calculation of velocity and pressure. A benchmark is also presented to access the numerical convergence properties of this type of methods in our context. Third, we extend the algorithms developed in the fixed domain case to the Arbitrary Lagrangian Eulerian framework. The issue of defining a high order ALE map is addressed. This allows to construct a computational domain that is described with curved elements. A benchmark using a direct method to solve the linear system or the Yosida-q methods is presented to show the convergence orders of the method proposed. Finally, we apply the developed method with an implicit fully coupled and semi-implicit approach, to solve a fluid-structure interaction problem for a simple 2D hemodynamics example.
publishDate 2009
dc.date.none.fl_str_mv 2009-10-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/115435
https://hdl.handle.net/10316/115435
https://doi.org/10.5075/epfl-thesis-4529
url https://hdl.handle.net/10316/115435
https://doi.org/10.5075/epfl-thesis-4529
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv cv-prod-3621180
urn:nbn:ch:bel-epfl-thesis4529-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv École Polytechnique Fédérale de Lausanne
publisher.none.fl_str_mv École Polytechnique Fédérale de Lausanne
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602591731220480