EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/181404 |
Summary: | "The biosphere solution to the protein design problem is akin to a planetwide computational machine running a simple stochastic algorithm. The root of its success lies in the open endedness and diversity of its search, willing to extend across all possible niches over time. Nature’s work produces living transient DNA artifacts that are stored in the biosphere, and, at an increasing rate, being read by sequencing technology and transfered to large datasets now hosting millions of raw samples. This data can be leveraged by the use of increasingly large pLM(protein Language models), that have been shown to essentially function as unsupervised protein structure learners. (...)" |
id |
RCAP_441330b03fabfda06cd8610aa07430da |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/181404 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGNΔΔOmegafoldPythiapLM"The biosphere solution to the protein design problem is akin to a planetwide computational machine running a simple stochastic algorithm. The root of its success lies in the open endedness and diversity of its search, willing to extend across all possible niches over time. Nature’s work produces living transient DNA artifacts that are stored in the biosphere, and, at an increasing rate, being read by sequencing technology and transfered to large datasets now hosting millions of raw samples. This data can be leveraged by the use of increasingly large pLM(protein Language models), that have been shown to essentially function as unsupervised protein structure learners. (...)"Instituto de Tecnologia Química e Biológica António Xavier. Universidade NOVA de Lisboa.Vanneschi, LeonardoRocha, IsabelRUNBernardino, Rodrigo António Correia Tavares2025-03-26T16:17:51Z2024-02-122024-02-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/181404TID:203618769enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-31T02:06:05Zoai:run.unl.pt:10362/181404Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T04:42:28.025976Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN |
title |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN |
spellingShingle |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN Bernardino, Rodrigo António Correia Tavares ΔΔ Omegafold Pythia pLM |
title_short |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN |
title_full |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN |
title_fullStr |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN |
title_full_unstemmed |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN |
title_sort |
EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN |
author |
Bernardino, Rodrigo António Correia Tavares |
author_facet |
Bernardino, Rodrigo António Correia Tavares |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vanneschi, Leonardo Rocha, Isabel RUN |
dc.contributor.author.fl_str_mv |
Bernardino, Rodrigo António Correia Tavares |
dc.subject.por.fl_str_mv |
ΔΔ Omegafold Pythia pLM |
topic |
ΔΔ Omegafold Pythia pLM |
description |
"The biosphere solution to the protein design problem is akin to a planetwide computational machine running a simple stochastic algorithm. The root of its success lies in the open endedness and diversity of its search, willing to extend across all possible niches over time. Nature’s work produces living transient DNA artifacts that are stored in the biosphere, and, at an increasing rate, being read by sequencing technology and transfered to large datasets now hosting millions of raw samples. This data can be leveraged by the use of increasingly large pLM(protein Language models), that have been shown to essentially function as unsupervised protein structure learners. (...)" |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02-12 2024-02-12T00:00:00Z 2025-03-26T16:17:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/181404 TID:203618769 |
url |
http://hdl.handle.net/10362/181404 |
identifier_str_mv |
TID:203618769 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto de Tecnologia Química e Biológica António Xavier. Universidade NOVA de Lisboa. |
publisher.none.fl_str_mv |
Instituto de Tecnologia Química e Biológica António Xavier. Universidade NOVA de Lisboa. |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602127342075904 |