EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN

Bibliographic Details
Main Author: Bernardino, Rodrigo António Correia Tavares
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/181404
Summary: "The biosphere solution to the protein design problem is akin to a planetwide computational machine running a simple stochastic algorithm. The root of its success lies in the open endedness and diversity of its search, willing to extend across all possible niches over time. Nature’s work produces living transient DNA artifacts that are stored in the biosphere, and, at an increasing rate, being read by sequencing technology and transfered to large datasets now hosting millions of raw samples. This data can be leveraged by the use of increasingly large pLM(protein Language models), that have been shown to essentially function as unsupervised protein structure learners. (...)"
id RCAP_441330b03fabfda06cd8610aa07430da
oai_identifier_str oai:run.unl.pt:10362/181404
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGNΔΔOmegafoldPythiapLM"The biosphere solution to the protein design problem is akin to a planetwide computational machine running a simple stochastic algorithm. The root of its success lies in the open endedness and diversity of its search, willing to extend across all possible niches over time. Nature’s work produces living transient DNA artifacts that are stored in the biosphere, and, at an increasing rate, being read by sequencing technology and transfered to large datasets now hosting millions of raw samples. This data can be leveraged by the use of increasingly large pLM(protein Language models), that have been shown to essentially function as unsupervised protein structure learners. (...)"Instituto de Tecnologia Química e Biológica António Xavier. Universidade NOVA de Lisboa.Vanneschi, LeonardoRocha, IsabelRUNBernardino, Rodrigo António Correia Tavares2025-03-26T16:17:51Z2024-02-122024-02-12T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/181404TID:203618769enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-31T02:06:05Zoai:run.unl.pt:10362/181404Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T04:42:28.025976Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
title EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
spellingShingle EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
Bernardino, Rodrigo António Correia Tavares
ΔΔ
Omegafold
Pythia
pLM
title_short EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
title_full EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
title_fullStr EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
title_full_unstemmed EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
title_sort EXPERIMENTS IN THE USE OF ΔΔ PREDICTIONS FOR DENOVO IN-SILICO PROTEIN DESIGN
author Bernardino, Rodrigo António Correia Tavares
author_facet Bernardino, Rodrigo António Correia Tavares
author_role author
dc.contributor.none.fl_str_mv Vanneschi, Leonardo
Rocha, Isabel
RUN
dc.contributor.author.fl_str_mv Bernardino, Rodrigo António Correia Tavares
dc.subject.por.fl_str_mv ΔΔ
Omegafold
Pythia
pLM
topic ΔΔ
Omegafold
Pythia
pLM
description "The biosphere solution to the protein design problem is akin to a planetwide computational machine running a simple stochastic algorithm. The root of its success lies in the open endedness and diversity of its search, willing to extend across all possible niches over time. Nature’s work produces living transient DNA artifacts that are stored in the biosphere, and, at an increasing rate, being read by sequencing technology and transfered to large datasets now hosting millions of raw samples. This data can be leveraged by the use of increasingly large pLM(protein Language models), that have been shown to essentially function as unsupervised protein structure learners. (...)"
publishDate 2024
dc.date.none.fl_str_mv 2024-02-12
2024-02-12T00:00:00Z
2025-03-26T16:17:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/181404
TID:203618769
url http://hdl.handle.net/10362/181404
identifier_str_mv TID:203618769
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto de Tecnologia Química e Biológica António Xavier. Universidade NOVA de Lisboa.
publisher.none.fl_str_mv Instituto de Tecnologia Química e Biológica António Xavier. Universidade NOVA de Lisboa.
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602127342075904