Compositional baseline assessments to address soil pollution : an application in Langreo, Spain
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.11/7784 |
Summary: | Potentially Toxic Elements (PTEs) are contaminants with high toxicity and complex geochemical behaviour and, therefore, high PTEs contents in soil may affect ecosystems and/or human health. However, before addressing the measurement of soil pollution, it is necessary to understand what is meant by pollution-free soil. Often, this background, or pollution baseline, is undefined or only partially known. Since the concentration of chemical elements is compositional, as the attributes vary together, here we present a novel approach to build compositional indicators based on Compositional Data (CoDa) principles. The steps of this new methodology are: 1) Exploratory data analysis through variation matrix, biplots or CoDa dendrograms; 2) Selection of geological background in terms of a trimmed subsample that can be assumed as non-pollutant; 3) Computing the spread Aitchison distance from each sample point to the trimmed sample; 4) Performing a compositional balance able to predict the Aitchison distance computed in step 3. Identifying a compositional balance, including pollutant and non-pollutant elements, with sparsity and simplicity as properties, is crucial for the construction of a Compositional Pollution Indicator (CI). Here we explored a database of 150 soil samples and 37 chemical elements from the contaminated region of Langreo, Northwestern Spain. There were obtained three Cis: the first two using elements obtained through CoDa analysis, and the third one selecting a list of pollutants and non-pollutants based on expert knowledge and previous studies. The three indicators went through a Stochastic Sequential Gaussian simulation. The results of the 100 computed simulations are summarized through mean image maps and probability maps of exceeding a given threshold, thus allowing characterization of the spatial distribution and variability of the CIs. A better understanding of the trends of relative enrichment and PTEs fate is discussed. |
id |
RCAP_43dd29cba4a22a8bd7d0f5d09e9c5a9f |
---|---|
oai_identifier_str |
oai:repositorio.ipcb.pt:10400.11/7784 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Compositional baseline assessments to address soil pollution : an application in Langreo, SpainPotentially toxic elementsSoil pollutionCompositional indicatorsSequential Gaussian simulationPotentially Toxic Elements (PTEs) are contaminants with high toxicity and complex geochemical behaviour and, therefore, high PTEs contents in soil may affect ecosystems and/or human health. However, before addressing the measurement of soil pollution, it is necessary to understand what is meant by pollution-free soil. Often, this background, or pollution baseline, is undefined or only partially known. Since the concentration of chemical elements is compositional, as the attributes vary together, here we present a novel approach to build compositional indicators based on Compositional Data (CoDa) principles. The steps of this new methodology are: 1) Exploratory data analysis through variation matrix, biplots or CoDa dendrograms; 2) Selection of geological background in terms of a trimmed subsample that can be assumed as non-pollutant; 3) Computing the spread Aitchison distance from each sample point to the trimmed sample; 4) Performing a compositional balance able to predict the Aitchison distance computed in step 3. Identifying a compositional balance, including pollutant and non-pollutant elements, with sparsity and simplicity as properties, is crucial for the construction of a Compositional Pollution Indicator (CI). Here we explored a database of 150 soil samples and 37 chemical elements from the contaminated region of Langreo, Northwestern Spain. There were obtained three Cis: the first two using elements obtained through CoDa analysis, and the third one selecting a list of pollutants and non-pollutants based on expert knowledge and previous studies. The three indicators went through a Stochastic Sequential Gaussian simulation. The results of the 100 computed simulations are summarized through mean image maps and probability maps of exceeding a given threshold, thus allowing characterization of the spatial distribution and variability of the CIs. A better understanding of the trends of relative enrichment and PTEs fate is discussed.ElsevierRepositório Científico do Instituto Politécnico de Castelo BrancoBoente, CarlosAlbuquerque, M.T.D.Gallego, J.R.Pawlowsky-Glahn, VeraEgozcue, Juan José2024-01-03T01:31:14Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.11/7784eng10.1016/j.scitotenv.2021.152383info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:21:29Zoai:repositorio.ipcb.pt:10400.11/7784Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:35:37.489862Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain |
title |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain |
spellingShingle |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain Boente, Carlos Potentially toxic elements Soil pollution Compositional indicators Sequential Gaussian simulation |
title_short |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain |
title_full |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain |
title_fullStr |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain |
title_full_unstemmed |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain |
title_sort |
Compositional baseline assessments to address soil pollution : an application in Langreo, Spain |
author |
Boente, Carlos |
author_facet |
Boente, Carlos Albuquerque, M.T.D. Gallego, J.R. Pawlowsky-Glahn, Vera Egozcue, Juan José |
author_role |
author |
author2 |
Albuquerque, M.T.D. Gallego, J.R. Pawlowsky-Glahn, Vera Egozcue, Juan José |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Castelo Branco |
dc.contributor.author.fl_str_mv |
Boente, Carlos Albuquerque, M.T.D. Gallego, J.R. Pawlowsky-Glahn, Vera Egozcue, Juan José |
dc.subject.por.fl_str_mv |
Potentially toxic elements Soil pollution Compositional indicators Sequential Gaussian simulation |
topic |
Potentially toxic elements Soil pollution Compositional indicators Sequential Gaussian simulation |
description |
Potentially Toxic Elements (PTEs) are contaminants with high toxicity and complex geochemical behaviour and, therefore, high PTEs contents in soil may affect ecosystems and/or human health. However, before addressing the measurement of soil pollution, it is necessary to understand what is meant by pollution-free soil. Often, this background, or pollution baseline, is undefined or only partially known. Since the concentration of chemical elements is compositional, as the attributes vary together, here we present a novel approach to build compositional indicators based on Compositional Data (CoDa) principles. The steps of this new methodology are: 1) Exploratory data analysis through variation matrix, biplots or CoDa dendrograms; 2) Selection of geological background in terms of a trimmed subsample that can be assumed as non-pollutant; 3) Computing the spread Aitchison distance from each sample point to the trimmed sample; 4) Performing a compositional balance able to predict the Aitchison distance computed in step 3. Identifying a compositional balance, including pollutant and non-pollutant elements, with sparsity and simplicity as properties, is crucial for the construction of a Compositional Pollution Indicator (CI). Here we explored a database of 150 soil samples and 37 chemical elements from the contaminated region of Langreo, Northwestern Spain. There were obtained three Cis: the first two using elements obtained through CoDa analysis, and the third one selecting a list of pollutants and non-pollutants based on expert knowledge and previous studies. The three indicators went through a Stochastic Sequential Gaussian simulation. The results of the 100 computed simulations are summarized through mean image maps and probability maps of exceeding a given threshold, thus allowing characterization of the spatial distribution and variability of the CIs. A better understanding of the trends of relative enrichment and PTEs fate is discussed. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2024-01-03T01:31:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.11/7784 |
url |
http://hdl.handle.net/10400.11/7784 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.scitotenv.2021.152383 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599338854481920 |