Base change and K-theory for GL(n)
Main Author: | |
---|---|
Publication Date: | 2007 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://ciencia.iscte-iul.pt/id/ci-pub-20183 http://hdl.handle.net/10071/13369 |
Summary: | Let F be a nonarchimedean local field and let G = GL(n) = GL(n,F). Let E/F be a finite Galois extension. We investigate base change E/F at two levels: at the level of algebraic varieties, and at the level ofK-theory. We put special emphasis on the representations with Iwahori fixed vectors, and the tempered spectrum of GL(1) and GL(2). In this context, the prominent arithmetic invariant is the residue degree f(E/F). |
id |
RCAP_4376c509e5c1e9c36ff125f539e27e01 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/13369 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Base change and K-theory for GL(n)Local fieldGeneral linear groupAlgebraic varietyBase changeK-theoryLet F be a nonarchimedean local field and let G = GL(n) = GL(n,F). Let E/F be a finite Galois extension. We investigate base change E/F at two levels: at the level of algebraic varieties, and at the level ofK-theory. We put special emphasis on the representations with Iwahori fixed vectors, and the tempered spectrum of GL(1) and GL(2). In this context, the prominent arithmetic invariant is the residue degree f(E/F).European Mathematical Society Publishing House2017-05-15T16:29:35Z2007-01-01T00:00:00Z20072017-05-15T16:28:39Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-20183http://hdl.handle.net/10071/13369eng1661-695210.4171/JNCG/9Mendes, S.Plymen, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:26:02Zoai:repositorio.iscte-iul.pt:10071/13369Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:23:22.780696Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Base change and K-theory for GL(n) |
title |
Base change and K-theory for GL(n) |
spellingShingle |
Base change and K-theory for GL(n) Mendes, S. Local field General linear group Algebraic variety Base change K-theory |
title_short |
Base change and K-theory for GL(n) |
title_full |
Base change and K-theory for GL(n) |
title_fullStr |
Base change and K-theory for GL(n) |
title_full_unstemmed |
Base change and K-theory for GL(n) |
title_sort |
Base change and K-theory for GL(n) |
author |
Mendes, S. |
author_facet |
Mendes, S. Plymen, R. |
author_role |
author |
author2 |
Plymen, R. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Mendes, S. Plymen, R. |
dc.subject.por.fl_str_mv |
Local field General linear group Algebraic variety Base change K-theory |
topic |
Local field General linear group Algebraic variety Base change K-theory |
description |
Let F be a nonarchimedean local field and let G = GL(n) = GL(n,F). Let E/F be a finite Galois extension. We investigate base change E/F at two levels: at the level of algebraic varieties, and at the level ofK-theory. We put special emphasis on the representations with Iwahori fixed vectors, and the tempered spectrum of GL(1) and GL(2). In this context, the prominent arithmetic invariant is the residue degree f(E/F). |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01T00:00:00Z 2007 2017-05-15T16:29:35Z 2017-05-15T16:28:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ciencia.iscte-iul.pt/id/ci-pub-20183 http://hdl.handle.net/10071/13369 |
url |
https://ciencia.iscte-iul.pt/id/ci-pub-20183 http://hdl.handle.net/10071/13369 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1661-6952 10.4171/JNCG/9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society Publishing House |
publisher.none.fl_str_mv |
European Mathematical Society Publishing House |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597379682500609 |