Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study

Detalhes bibliográficos
Autor(a) principal: Monteiro, HL
Data de Publicação: 2024
Outros Autores: Antunes, M, Sarmento, M, Quental, C, Folgado, J
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.26/51179
Resumo: Background: Stemless implants were introduced to prevent some of the stem-related complications associated with the total shoulder arthroplasty. Although general requirements for receiving these implants include good bone quality conditions, little knowledge exists about how bone quality affects implant performance. The goal of this study was to evaluate the influence of age-induced changes in bone density, as a metric of bone quality, in the primary stability of five anatomic stemless shoulder implants using 3D finite element (FE) models. Methods: The implant designs considered were based on the Global Icon, Sidus, Simpliciti, SMR, and Inhance stemless implants. Shoulder arthroplasties were virtually simulated in Solidworks. The density distributions of 20 subjects from two age groups, 20 to 40 and 60 to 80 years old, were retrieved from medical image data and integrated into three-dimensional FE models of a single humerus geometry, developed in Abaqus, to avoid confounding factors associated with geometric characteristics. For the designs which do not have a solid collar covering the entire bone surface, i.e., the Sidus, Simpliciti, SMR, and Inhance implants, contact and non-contact conditions between the humeral head component and bone were considered. Primary stability was evaluated through the assessment of micromotions at the bone-implant interface considering eight load cases related to rehabilitation activities and demanding tasks. Three research variables, considering 20 μm, 50 μm, and 150 μm as thresholds for osseointegration, were used for a statistical analysis of the results. Results: The decreased bone density registered for the 60-80 age group led to larger micromotions at the bone-implant interface when compared to the 20-40 age group. The Global Icon-based and Inhance-based designs were the least sensitive to bone density, whereas the Sidus-based design was the most sensitive to bone density. The establishment of contact between the humeral head component and bone for the implants that do not have a solid collar led to decreased micromotions. Discussion: Although the age-induced decline in bone density led to increased micromotions in the FE models, some stemless shoulder implants presented good overall performance regardless of the osseointegration threshold considered, suggesting that age alone may not be a contraindication to anatomic total shoulder arthroplasty. If only primary stability is considered, the results suggested superior performance for the Global Icon-based and Inhance-based designs. Moreover, the humeral head component should contact the resected bone surface when feasible. Further investigation is necessary to combine these results with the long-term performance of the implants and allow more precise recommendations. Keywords: Shoulder arthroplasty; bone density; finite element method; micromotions; primary stability; stemless shoulder implants.
id RCAP_42701c95b36595195cba6c9ae9c6775a
oai_identifier_str oai:comum.rcaap.pt:10400.26/51179
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element studyArtroplastia do OmbroArthroplasty, Replacement, ShoulderBackground: Stemless implants were introduced to prevent some of the stem-related complications associated with the total shoulder arthroplasty. Although general requirements for receiving these implants include good bone quality conditions, little knowledge exists about how bone quality affects implant performance. The goal of this study was to evaluate the influence of age-induced changes in bone density, as a metric of bone quality, in the primary stability of five anatomic stemless shoulder implants using 3D finite element (FE) models. Methods: The implant designs considered were based on the Global Icon, Sidus, Simpliciti, SMR, and Inhance stemless implants. Shoulder arthroplasties were virtually simulated in Solidworks. The density distributions of 20 subjects from two age groups, 20 to 40 and 60 to 80 years old, were retrieved from medical image data and integrated into three-dimensional FE models of a single humerus geometry, developed in Abaqus, to avoid confounding factors associated with geometric characteristics. For the designs which do not have a solid collar covering the entire bone surface, i.e., the Sidus, Simpliciti, SMR, and Inhance implants, contact and non-contact conditions between the humeral head component and bone were considered. Primary stability was evaluated through the assessment of micromotions at the bone-implant interface considering eight load cases related to rehabilitation activities and demanding tasks. Three research variables, considering 20 μm, 50 μm, and 150 μm as thresholds for osseointegration, were used for a statistical analysis of the results. Results: The decreased bone density registered for the 60-80 age group led to larger micromotions at the bone-implant interface when compared to the 20-40 age group. The Global Icon-based and Inhance-based designs were the least sensitive to bone density, whereas the Sidus-based design was the most sensitive to bone density. The establishment of contact between the humeral head component and bone for the implants that do not have a solid collar led to decreased micromotions. Discussion: Although the age-induced decline in bone density led to increased micromotions in the FE models, some stemless shoulder implants presented good overall performance regardless of the osseointegration threshold considered, suggesting that age alone may not be a contraindication to anatomic total shoulder arthroplasty. If only primary stability is considered, the results suggested superior performance for the Global Icon-based and Inhance-based designs. Moreover, the humeral head component should contact the resected bone surface when feasible. Further investigation is necessary to combine these results with the long-term performance of the implants and allow more precise recommendations. Keywords: Shoulder arthroplasty; bone density; finite element method; micromotions; primary stability; stemless shoulder implants.Repositório ComumMonteiro, HLAntunes, MSarmento, MQuental, CFolgado, J2024-06-30T21:28:30Z20242024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/51179eng10.1016/j.jse.2024.04.013info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-15T10:53:55Zoai:comum.rcaap.pt:10400.26/51179Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:25:16.376413Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
title Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
spellingShingle Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
Monteiro, HL
Artroplastia do Ombro
Arthroplasty, Replacement, Shoulder
title_short Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
title_full Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
title_fullStr Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
title_full_unstemmed Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
title_sort Influence of age-related bone density changes on primary stability in stemless shoulder arthroplasty: A multi-implant finite element study
author Monteiro, HL
author_facet Monteiro, HL
Antunes, M
Sarmento, M
Quental, C
Folgado, J
author_role author
author2 Antunes, M
Sarmento, M
Quental, C
Folgado, J
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Monteiro, HL
Antunes, M
Sarmento, M
Quental, C
Folgado, J
dc.subject.por.fl_str_mv Artroplastia do Ombro
Arthroplasty, Replacement, Shoulder
topic Artroplastia do Ombro
Arthroplasty, Replacement, Shoulder
description Background: Stemless implants were introduced to prevent some of the stem-related complications associated with the total shoulder arthroplasty. Although general requirements for receiving these implants include good bone quality conditions, little knowledge exists about how bone quality affects implant performance. The goal of this study was to evaluate the influence of age-induced changes in bone density, as a metric of bone quality, in the primary stability of five anatomic stemless shoulder implants using 3D finite element (FE) models. Methods: The implant designs considered were based on the Global Icon, Sidus, Simpliciti, SMR, and Inhance stemless implants. Shoulder arthroplasties were virtually simulated in Solidworks. The density distributions of 20 subjects from two age groups, 20 to 40 and 60 to 80 years old, were retrieved from medical image data and integrated into three-dimensional FE models of a single humerus geometry, developed in Abaqus, to avoid confounding factors associated with geometric characteristics. For the designs which do not have a solid collar covering the entire bone surface, i.e., the Sidus, Simpliciti, SMR, and Inhance implants, contact and non-contact conditions between the humeral head component and bone were considered. Primary stability was evaluated through the assessment of micromotions at the bone-implant interface considering eight load cases related to rehabilitation activities and demanding tasks. Three research variables, considering 20 μm, 50 μm, and 150 μm as thresholds for osseointegration, were used for a statistical analysis of the results. Results: The decreased bone density registered for the 60-80 age group led to larger micromotions at the bone-implant interface when compared to the 20-40 age group. The Global Icon-based and Inhance-based designs were the least sensitive to bone density, whereas the Sidus-based design was the most sensitive to bone density. The establishment of contact between the humeral head component and bone for the implants that do not have a solid collar led to decreased micromotions. Discussion: Although the age-induced decline in bone density led to increased micromotions in the FE models, some stemless shoulder implants presented good overall performance regardless of the osseointegration threshold considered, suggesting that age alone may not be a contraindication to anatomic total shoulder arthroplasty. If only primary stability is considered, the results suggested superior performance for the Global Icon-based and Inhance-based designs. Moreover, the humeral head component should contact the resected bone surface when feasible. Further investigation is necessary to combine these results with the long-term performance of the implants and allow more precise recommendations. Keywords: Shoulder arthroplasty; bone density; finite element method; micromotions; primary stability; stemless shoulder implants.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-30T21:28:30Z
2024
2024-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/51179
url http://hdl.handle.net/10400.26/51179
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.jse.2024.04.013
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602980039884800