Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope

Bibliographic Details
Main Author: Fonseca, C. M. da
Publication Date: 2008
Other Authors: Sá, E. Marques de
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/4591
Summary: We determine the number of alternating parity sequences that are subsequences of an increasing m-tuple of integers. For this and other related counting problems we find formulas that are combinations of Fibonacci numbers. These results are applied to determine, among other things, the number of vertices of any face of the polytope of tridiagonal doubly stochastic matrices.
id RCAP_421c1702b7aa4cd9a80888f06f3dfdf1
oai_identifier_str oai:estudogeral.uc.pt:10316/4591
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytopeDoubly stochastic matrixBirkhoff polytopeTridiagonal matrixNumber of verticesWe determine the number of alternating parity sequences that are subsequences of an increasing m-tuple of integers. For this and other related counting problems we find formulas that are combinations of Fibonacci numbers. These results are applied to determine, among other things, the number of vertices of any face of the polytope of tridiagonal doubly stochastic matrices.http://www.sciencedirect.com/science/article/B6V00-4NF4F6K-H/1/e5d0725d5317b08a025d7df94b2ca6432008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttps://hdl.handle.net/10316/4591https://hdl.handle.net/10316/4591engDiscrete Mathematics. 308:7 (2008) 1308-1318Fonseca, C. M. daSá, E. Marques deinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T13:05:26Zoai:estudogeral.uc.pt:10316/4591Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:10.416973Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
title Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
spellingShingle Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
Fonseca, C. M. da
Doubly stochastic matrix
Birkhoff polytope
Tridiagonal matrix
Number of vertices
title_short Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
title_full Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
title_fullStr Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
title_full_unstemmed Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
title_sort Fibonacci numbers, alternating parity sequences and faces of the tridiagonal Birkhoff polytope
author Fonseca, C. M. da
author_facet Fonseca, C. M. da
Sá, E. Marques de
author_role author
author2 Sá, E. Marques de
author2_role author
dc.contributor.author.fl_str_mv Fonseca, C. M. da
Sá, E. Marques de
dc.subject.por.fl_str_mv Doubly stochastic matrix
Birkhoff polytope
Tridiagonal matrix
Number of vertices
topic Doubly stochastic matrix
Birkhoff polytope
Tridiagonal matrix
Number of vertices
description We determine the number of alternating parity sequences that are subsequences of an increasing m-tuple of integers. For this and other related counting problems we find formulas that are combinations of Fibonacci numbers. These results are applied to determine, among other things, the number of vertices of any face of the polytope of tridiagonal doubly stochastic matrices.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/4591
https://hdl.handle.net/10316/4591
url https://hdl.handle.net/10316/4591
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Discrete Mathematics. 308:7 (2008) 1308-1318
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602337692712960