A preliminary approach to the multilabel classification problem of Portuguese juridical documents
Main Author: | |
---|---|
Publication Date: | 2003 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10174/2559 |
Summary: | Portuguese juridical documents from Supreme Courts and the Attorney General’s Office are manually classified by juridical experts into a set of classes belonging to a taxonomy of concepts. In this paper, a preliminary approach to develop techniques to automat- ically classify these juridical documents, is proposed. As basic strategy, the integration of natural language processing techniques with machine learning ones is used. Support Vector Machines (SVM) are used as learn- ing algorithm and the obtained results are presented and compared with other approaches, such as C4.5 and Naive Bayes. |
id |
RCAP_42141b57d521e589b17c237cbbb7a462 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/2559 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A preliminary approach to the multilabel classification problem of Portuguese juridical documentsmachine learningText classificationPortuguese juridical documents from Supreme Courts and the Attorney General’s Office are manually classified by juridical experts into a set of classes belonging to a taxonomy of concepts. In this paper, a preliminary approach to develop techniques to automat- ically classify these juridical documents, is proposed. As basic strategy, the integration of natural language processing techniques with machine learning ones is used. Support Vector Machines (SVM) are used as learn- ing algorithm and the obtained results are presented and compared with other approaches, such as C4.5 and Naive Bayes.Springer-Verlag2011-02-15T11:25:43Z2011-02-152003-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article491128 bytesapplication/pdfhttp://hdl.handle.net/10174/2559http://hdl.handle.net/10174/2559eng435-444Lecture Notes in Artificial Intelligence2902livretcg@uevora.ptpq@uevora.ptEPIA-03, 11th Portuguese Conference on Artificial IntelligenceMoura-Pires, F.Abreu, S.498Gonçalves, TeresaQuaresma, Pauloinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T18:39:06Zoai:dspace.uevora.pt:10174/2559Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:51:22.080010Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
spellingShingle |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents Gonçalves, Teresa machine learning Text classification |
title_short |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_full |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_fullStr |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_full_unstemmed |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
title_sort |
A preliminary approach to the multilabel classification problem of Portuguese juridical documents |
author |
Gonçalves, Teresa |
author_facet |
Gonçalves, Teresa Quaresma, Paulo |
author_role |
author |
author2 |
Quaresma, Paulo |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Gonçalves, Teresa Quaresma, Paulo |
dc.subject.por.fl_str_mv |
machine learning Text classification |
topic |
machine learning Text classification |
description |
Portuguese juridical documents from Supreme Courts and the Attorney General’s Office are manually classified by juridical experts into a set of classes belonging to a taxonomy of concepts. In this paper, a preliminary approach to develop techniques to automat- ically classify these juridical documents, is proposed. As basic strategy, the integration of natural language processing techniques with machine learning ones is used. Support Vector Machines (SVM) are used as learn- ing algorithm and the obtained results are presented and compared with other approaches, such as C4.5 and Naive Bayes. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01T00:00:00Z 2011-02-15T11:25:43Z 2011-02-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/2559 http://hdl.handle.net/10174/2559 |
url |
http://hdl.handle.net/10174/2559 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
435-444 Lecture Notes in Artificial Intelligence 2902 livre tcg@uevora.pt pq@uevora.pt EPIA-03, 11th Portuguese Conference on Artificial Intelligence Moura-Pires, F. Abreu, S. 498 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
491128 bytes application/pdf |
dc.publisher.none.fl_str_mv |
Springer-Verlag |
publisher.none.fl_str_mv |
Springer-Verlag |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592299721850880 |