Ion pumps as biological targets for decavanadate

Bibliographic Details
Main Author: Aureliano, M.
Publication Date: 2013
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/2699
Summary: The putative applications of poly-, oligo- and mono-oxometalates in biochemistry, biology, pharmacology and medicine are rapidly attracting interest. In particular, these compounds may act as potent ion pump inhibitors and have the potential to play a role in the treatment of e.g. ulcers, cancer and ischemic heart disease. However, the mechanism of action is not completely understood in most cases, and even remains largely unknown in other cases. In the present review we discuss the most recent insights into the interaction between mono- and polyoxometalate ions with ion pumps, with a particular focus on the interaction of decavanadate with Ca2+- ATPase. We also compare the proposed mode of action with those of established ion pump inhibitors which are currently in therapeutic use. Of the 18 classes of compounds which are known to act as ion pump inhibitors, the complete mechanism of inhibition is only known for a handful. It has, however, been established that most ion pump inhibitors bind mainly to the E2 ion pump conformation within the membrane domain from the extracellular side and block the cation release. Polyoxometalates such as decavanadate, in contrast, interact with Ca2+- ATPase near the nucleotide binding site domain or at a pocket involving several cytoplasmic domains, and therefore needs to cross through the membrane bilayer. In contrast to monomeric vanadate, which only binds to the E2 conformation, decavanadate binds to all protein conformations, i.e. E1, E1P, E2 and E2P. Moreover, the specific interaction of decavanadate with sarcoplasmic reticulum Ca2+- ATPase has been shown to be non-competitive with respect to ATP and induces protein cysteine oxidation with concomitant vanadium reduction which might explain the high inhibitory capacity of V10, (IC50=15 µM) which is quite similar to the majority of the established therapeutic drugs.
id RCAP_41ed43d929d0f7c69f26071ff163e9b4
oai_identifier_str oai:sapientia.ualg.pt:10400.1/2699
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Ion pumps as biological targets for decavanadateDecavanadateIon pump ATPasesThe putative applications of poly-, oligo- and mono-oxometalates in biochemistry, biology, pharmacology and medicine are rapidly attracting interest. In particular, these compounds may act as potent ion pump inhibitors and have the potential to play a role in the treatment of e.g. ulcers, cancer and ischemic heart disease. However, the mechanism of action is not completely understood in most cases, and even remains largely unknown in other cases. In the present review we discuss the most recent insights into the interaction between mono- and polyoxometalate ions with ion pumps, with a particular focus on the interaction of decavanadate with Ca2+- ATPase. We also compare the proposed mode of action with those of established ion pump inhibitors which are currently in therapeutic use. Of the 18 classes of compounds which are known to act as ion pump inhibitors, the complete mechanism of inhibition is only known for a handful. It has, however, been established that most ion pump inhibitors bind mainly to the E2 ion pump conformation within the membrane domain from the extracellular side and block the cation release. Polyoxometalates such as decavanadate, in contrast, interact with Ca2+- ATPase near the nucleotide binding site domain or at a pocket involving several cytoplasmic domains, and therefore needs to cross through the membrane bilayer. In contrast to monomeric vanadate, which only binds to the E2 conformation, decavanadate binds to all protein conformations, i.e. E1, E1P, E2 and E2P. Moreover, the specific interaction of decavanadate with sarcoplasmic reticulum Ca2+- ATPase has been shown to be non-competitive with respect to ATP and induces protein cysteine oxidation with concomitant vanadium reduction which might explain the high inhibitory capacity of V10, (IC50=15 µM) which is quite similar to the majority of the established therapeutic drugs.Royal Society of ChemsitrySapientiaAureliano, M.2013-05-21T15:01:14Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/2699eng1477-9226info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:39:34Zoai:sapientia.ualg.pt:10400.1/2699Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:30:39.427922Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Ion pumps as biological targets for decavanadate
title Ion pumps as biological targets for decavanadate
spellingShingle Ion pumps as biological targets for decavanadate
Aureliano, M.
Decavanadate
Ion pump ATPases
title_short Ion pumps as biological targets for decavanadate
title_full Ion pumps as biological targets for decavanadate
title_fullStr Ion pumps as biological targets for decavanadate
title_full_unstemmed Ion pumps as biological targets for decavanadate
title_sort Ion pumps as biological targets for decavanadate
author Aureliano, M.
author_facet Aureliano, M.
author_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Aureliano, M.
dc.subject.por.fl_str_mv Decavanadate
Ion pump ATPases
topic Decavanadate
Ion pump ATPases
description The putative applications of poly-, oligo- and mono-oxometalates in biochemistry, biology, pharmacology and medicine are rapidly attracting interest. In particular, these compounds may act as potent ion pump inhibitors and have the potential to play a role in the treatment of e.g. ulcers, cancer and ischemic heart disease. However, the mechanism of action is not completely understood in most cases, and even remains largely unknown in other cases. In the present review we discuss the most recent insights into the interaction between mono- and polyoxometalate ions with ion pumps, with a particular focus on the interaction of decavanadate with Ca2+- ATPase. We also compare the proposed mode of action with those of established ion pump inhibitors which are currently in therapeutic use. Of the 18 classes of compounds which are known to act as ion pump inhibitors, the complete mechanism of inhibition is only known for a handful. It has, however, been established that most ion pump inhibitors bind mainly to the E2 ion pump conformation within the membrane domain from the extracellular side and block the cation release. Polyoxometalates such as decavanadate, in contrast, interact with Ca2+- ATPase near the nucleotide binding site domain or at a pocket involving several cytoplasmic domains, and therefore needs to cross through the membrane bilayer. In contrast to monomeric vanadate, which only binds to the E2 conformation, decavanadate binds to all protein conformations, i.e. E1, E1P, E2 and E2P. Moreover, the specific interaction of decavanadate with sarcoplasmic reticulum Ca2+- ATPase has been shown to be non-competitive with respect to ATP and induces protein cysteine oxidation with concomitant vanadium reduction which might explain the high inhibitory capacity of V10, (IC50=15 µM) which is quite similar to the majority of the established therapeutic drugs.
publishDate 2013
dc.date.none.fl_str_mv 2013-05-21T15:01:14Z
2013
2013-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/2699
url http://hdl.handle.net/10400.1/2699
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1477-9226
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemsitry
publisher.none.fl_str_mv Royal Society of Chemsitry
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598692815273984