Digital signal processing and machine learning for coherent optical systems: a Python approach

Detalhes bibliográficos
Autor(a) principal: Zadorozhnyy, Denys
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/41696
Resumo: Since their inception, optical communications have gone through a lot of changes, with constant innovation and evolution. The introduction of Digital Signal Processing (DSP) enabled the immense and rapid progression of coherent optics. This, in turn, allowed the use of advanced modulation formats, such as Quadrature Amplitude Modulation (QAM), which made this kind of system much more efficient in comparison to their Intensity Modulation with Direct Detection (IM-DD) counterparts. DSP allows for the mitigation of imperfections in the Local Oscillator (LO) at the receiver and in the transmission channel in the digital domain, which eliminates the need for specific physical components to do so. These fast and highly reliable optical communication systems have truly revolutionized the way information is transmitted. However, the world keeps evolving. And with it, the demands for even more efficient and secure data transmission continue to grow. With that in mind, Machine Learning (ML) appeared as a means to further push optical communications to new levels. It has already shown to be very effective and groundbreaking in many other fields. In that sense, this thesis explores the intersection of coherent optical fiber systems with ML. It was already shown that an Autoencoder (AE) could learn full end-to-end mapping and demapping of a transmission system. In this work, the main objective is to develop a complete simulation tool using the Python programming language, which integrates classical DSP approaches with the innovative ideas of ML. First, going step by step, a simple simulator is made with the base components of a communications system, such as a mapper, demapper, and Additive White Gaussian Noise (AWGN) channel. After its validation more complex DSP functionalities are added to the receiver side: Adaptive Equalization, Carrier-Frequency Recovery (CFR), and Carrier-Phase Recovery (CPR). Different types of algorithms are explored and compared. Bandwidth limitations, mismatches in frequency, and laser phase noise can all deteriorate the transmitted signal. Those effects were applied to the system under study, and various tests were done in order to validate the developed algorithms. Using the developed simulation tool, the compensation of each one of these effects was demonstrated. Finally, the AE is introduced, and the chosen architecture is explained. In this work, it was opted to use a Neural Network (NN) at the encoder and a minimum distance demapper at the decoder. This way the computational complexity is reduced, and the geometrically shaped constellations can be easily exported and integrated into the developed Python simulator. Those new constellations had a visible gain over the regular square ones. At last, residual laser phase noise is introduced in the AE, and it was demonstrated that the optimization of the constellation geometry can effectively contribute to enhance the performance of phase noise impaired coherent optical systems.
id RCAP_3fbceb3e6e5b11200c3adfb84cd0cb98
oai_identifier_str oai:ria.ua.pt:10773/41696
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Digital signal processing and machine learning for coherent optical systems: a Python approachAutoencoderCoherent Optical SystemDigital Signal ProcessingGeometric ShapingSince their inception, optical communications have gone through a lot of changes, with constant innovation and evolution. The introduction of Digital Signal Processing (DSP) enabled the immense and rapid progression of coherent optics. This, in turn, allowed the use of advanced modulation formats, such as Quadrature Amplitude Modulation (QAM), which made this kind of system much more efficient in comparison to their Intensity Modulation with Direct Detection (IM-DD) counterparts. DSP allows for the mitigation of imperfections in the Local Oscillator (LO) at the receiver and in the transmission channel in the digital domain, which eliminates the need for specific physical components to do so. These fast and highly reliable optical communication systems have truly revolutionized the way information is transmitted. However, the world keeps evolving. And with it, the demands for even more efficient and secure data transmission continue to grow. With that in mind, Machine Learning (ML) appeared as a means to further push optical communications to new levels. It has already shown to be very effective and groundbreaking in many other fields. In that sense, this thesis explores the intersection of coherent optical fiber systems with ML. It was already shown that an Autoencoder (AE) could learn full end-to-end mapping and demapping of a transmission system. In this work, the main objective is to develop a complete simulation tool using the Python programming language, which integrates classical DSP approaches with the innovative ideas of ML. First, going step by step, a simple simulator is made with the base components of a communications system, such as a mapper, demapper, and Additive White Gaussian Noise (AWGN) channel. After its validation more complex DSP functionalities are added to the receiver side: Adaptive Equalization, Carrier-Frequency Recovery (CFR), and Carrier-Phase Recovery (CPR). Different types of algorithms are explored and compared. Bandwidth limitations, mismatches in frequency, and laser phase noise can all deteriorate the transmitted signal. Those effects were applied to the system under study, and various tests were done in order to validate the developed algorithms. Using the developed simulation tool, the compensation of each one of these effects was demonstrated. Finally, the AE is introduced, and the chosen architecture is explained. In this work, it was opted to use a Neural Network (NN) at the encoder and a minimum distance demapper at the decoder. This way the computational complexity is reduced, and the geometrically shaped constellations can be easily exported and integrated into the developed Python simulator. Those new constellations had a visible gain over the regular square ones. At last, residual laser phase noise is introduced in the AE, and it was demonstrated that the optimization of the constellation geometry can effectively contribute to enhance the performance of phase noise impaired coherent optical systems.Desde a sua criação, as comunicações óticas passaram por muitas mudanças, com constante inovação e evolução. A introdução de Processamento Digital de Sinal (em inglês, DSP) permitiu um imenso e rápido progresso da ótica coerente. Isto, por sua vez, permitiu a utilização de formatos de modulação avançados, como a Modulação de Amplitude em Quadratura (em inglês, QAM), o que aumentou bastante a eficiência deste tipo de sistemas comparativamente aos sistemas que utilizam Modulação em Intensidade com Deteção Direta (em inglês, IM-DD). O DSP permite a mitigação de imparidades do Oscilador Local (em inglês, LO) no recetor e do canal de transmissão no domínio digital, o que elimina a necessidade de componentes físicos específicos para o fazer. Estes sistemas de comunicação ótica rápidos e altamente confiáveis revolucionaram verdadeiramente a maneira como a informação é transmitida. No entanto, o mundo continua a evoluir. E com ele, as exigências por uma transmissão de dados ainda mais eficiente e segura continuam a crescer. Com isso em mente, a Aprendizagem de Máquina (em inglês, ML) surgiu como um meio para levar as comunicações óticas a novos patamares. Esta já se mostrou bastante eficaz e inovadora em muitos outros campos. Nesse sentido, esta tese explora a interseção de sistemas coerentes de fibra ótica com ML. Já foi demonstrado que um Codificador Automático (em inglês, AE) consegue aprender o mapeamento e o desmapeamento completo de ponta-a-ponta de um sistema de transmissão. Neste trabalho, o objetivo principal é desenvolver uma ferramenta de simulação completa utilizando a linguagem de programação Python, que integra abordagens clássicas de DSP com as ideias inovadoras de ML. Primeiro, passo a passo, é criado um simulador simples, com os componentes básicos de um sistema de comunicação, como um mapeador, desmapeador e um canal de Ruído Gaussiano Branco Aditivo (em inglês, AWGN). Após a sua validação, funcionalidades de DSP mais complexas são adicionadas do lado do receptor: Equalização Adaptativa, Recuperação da Frequência da Portadora (em inglês, CFR) e Recuperação da Fase da Portadora (em inglês, CPR). Diferentes tipos de algoritmos são explorados e comparados. Limitações de largura de banda, desajustes de frequência e ruído de fase do laser podem deteriorar o sinal transmitido. Esses efeitos foram aplicados ao sistema em estudo, e vários testes foram realizados para validar os algoritmos desenvolvidos. Utilizando a ferramenta de simulação desenvolvida, foi demonstrada a compensação de cada um desses efeitos. Finalmente, o AE é introduzido, e a arquitetura escolhida é explicada. Neste trabalho, optou-se por usar uma Rede Neural (em inglês, NN) no codificador e um desmapeador de distância mínima no descodificador. Dessa forma, a complexidade computacional é reduzida e as constelações geometricamente formatadas podem ser facilmente exportadas e integradas no simulador Python desenvolvido. Essas novas constelações tiveram um ganho visível em relação às convencionais. Por fim, o ruído residual de fase do laser é introduzido no AE, demonstrando-se que a otimização da geometria da constelação do sinal transmitido permite melhorar o desempenho de sistemas afetados por ruído de fase.2024-04-24T08:22:52Z2023-12-13T00:00:00Z2023-12-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41696engZadorozhnyy, Denysinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:56:32Zoai:ria.ua.pt:10773/41696Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:24:22.134373Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Digital signal processing and machine learning for coherent optical systems: a Python approach
title Digital signal processing and machine learning for coherent optical systems: a Python approach
spellingShingle Digital signal processing and machine learning for coherent optical systems: a Python approach
Zadorozhnyy, Denys
Autoencoder
Coherent Optical System
Digital Signal Processing
Geometric Shaping
title_short Digital signal processing and machine learning for coherent optical systems: a Python approach
title_full Digital signal processing and machine learning for coherent optical systems: a Python approach
title_fullStr Digital signal processing and machine learning for coherent optical systems: a Python approach
title_full_unstemmed Digital signal processing and machine learning for coherent optical systems: a Python approach
title_sort Digital signal processing and machine learning for coherent optical systems: a Python approach
author Zadorozhnyy, Denys
author_facet Zadorozhnyy, Denys
author_role author
dc.contributor.author.fl_str_mv Zadorozhnyy, Denys
dc.subject.por.fl_str_mv Autoencoder
Coherent Optical System
Digital Signal Processing
Geometric Shaping
topic Autoencoder
Coherent Optical System
Digital Signal Processing
Geometric Shaping
description Since their inception, optical communications have gone through a lot of changes, with constant innovation and evolution. The introduction of Digital Signal Processing (DSP) enabled the immense and rapid progression of coherent optics. This, in turn, allowed the use of advanced modulation formats, such as Quadrature Amplitude Modulation (QAM), which made this kind of system much more efficient in comparison to their Intensity Modulation with Direct Detection (IM-DD) counterparts. DSP allows for the mitigation of imperfections in the Local Oscillator (LO) at the receiver and in the transmission channel in the digital domain, which eliminates the need for specific physical components to do so. These fast and highly reliable optical communication systems have truly revolutionized the way information is transmitted. However, the world keeps evolving. And with it, the demands for even more efficient and secure data transmission continue to grow. With that in mind, Machine Learning (ML) appeared as a means to further push optical communications to new levels. It has already shown to be very effective and groundbreaking in many other fields. In that sense, this thesis explores the intersection of coherent optical fiber systems with ML. It was already shown that an Autoencoder (AE) could learn full end-to-end mapping and demapping of a transmission system. In this work, the main objective is to develop a complete simulation tool using the Python programming language, which integrates classical DSP approaches with the innovative ideas of ML. First, going step by step, a simple simulator is made with the base components of a communications system, such as a mapper, demapper, and Additive White Gaussian Noise (AWGN) channel. After its validation more complex DSP functionalities are added to the receiver side: Adaptive Equalization, Carrier-Frequency Recovery (CFR), and Carrier-Phase Recovery (CPR). Different types of algorithms are explored and compared. Bandwidth limitations, mismatches in frequency, and laser phase noise can all deteriorate the transmitted signal. Those effects were applied to the system under study, and various tests were done in order to validate the developed algorithms. Using the developed simulation tool, the compensation of each one of these effects was demonstrated. Finally, the AE is introduced, and the chosen architecture is explained. In this work, it was opted to use a Neural Network (NN) at the encoder and a minimum distance demapper at the decoder. This way the computational complexity is reduced, and the geometrically shaped constellations can be easily exported and integrated into the developed Python simulator. Those new constellations had a visible gain over the regular square ones. At last, residual laser phase noise is introduced in the AE, and it was demonstrated that the optimization of the constellation geometry can effectively contribute to enhance the performance of phase noise impaired coherent optical systems.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-13T00:00:00Z
2023-12-13
2024-04-24T08:22:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41696
url http://hdl.handle.net/10773/41696
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594567980482560