Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties

Bibliographic Details
Main Author: Madeira, Mariana Simões
Publication Date: 2012
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/25129
Summary: Nos dias de hoje a informática aplicada à investigação em cancro é de grande importância. Neste trabalho, técnicas de aprendizagem não supervisionada e supervisionada foram aplicadas a dados de [18F]Fluorotimidina – Tomografia por Emissão de Positrões ([18F]FLT-PET). Como aprendizagem supervisionada usámos um filtro chamado Filtro Cinético Espacial (KSF) desenvolvido no Imperial College que é baseado na captação do radiofármaco ([18F]FLT) que difere de tecido para tecido. É um filtro capaz de separar tumor e vértebra dos restantes tecidos. Contudo, quando aplicado a imagens de ratinhos implantados com linhas celulares de cancro de HCT116, mesmo quando curvas de actividade ao longo do tempo do próprio ratinho foram usadas como modelo, este não conseguiu obter os mesmos resultados que obtivemos na análise de dados de um paciente com cancro no pâncreas com metastases no fígado onde o filtro foi capaz de distinguir o tumor dos órgãos circundantes. Esta análise pretende ser usada para detectar resposta precoce depois de um ciclo de tratamentos. Como aprendizagem não supervisionada usámos Self-Organizing Maps (SOM). Aplicámos este algoritmo em dados de [18F]FLT-PET de ratinhos. Primeiro aplicámos SOM na análise de dados de HCT116. O objectivo foi alcançado com sucesso, uma vez que os mapas finais conseguiram diferenciar imagens de pré das de pós tratamento. Numa segunda aplicação, usámos SOM com dados de ratinhos implatados com linhas celulares de A2780, SJSA, SN40R2 e HT29 para ver se este conseguia distinguir e classificar os tumores. Conseguimos apenas distinguir SJSA das restantes linhas celulares. Em ambos os estudos, dados de input de SOM eram voxels obtidos de regiões de interesse: tumor, músculo, bexiga, coração e rim. Características dos mapas finais são os padrões de clustering dos voxels de cada tecido. No resultado final, o SOM conseguiu os seguintes clusters: tumor, músculo e bexiga num cluster e coração e rins noutro mais difuso. Quando aplicámos SOM apenas a ROIs sobre os tumores, a separação entre diferentes tumores foi apenas parcialmente conseguida. Numa terceira aplicação usámos este método de classificação nos dados da paciente, para ver se este conseguia distinguir entre pré o pós tratamento, no sentido de poder avaliar se o paciente estaria a responder ou não ao tratamento. Descobrimos que o x algoritmo era capaz efectuar esta tarefa. Aqui o algoritmo agrupou fígado, tumor, vértebra e rins e colocou o coração noutro cluster.
id RCAP_3f435e89acdd89dca9a5dc070123bf6e
oai_identifier_str oai:estudogeral.uc.pt:10316/25129
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical propertiesRadionuclídeoTomografia por emissão de positrõesTumoresNos dias de hoje a informática aplicada à investigação em cancro é de grande importância. Neste trabalho, técnicas de aprendizagem não supervisionada e supervisionada foram aplicadas a dados de [18F]Fluorotimidina – Tomografia por Emissão de Positrões ([18F]FLT-PET). Como aprendizagem supervisionada usámos um filtro chamado Filtro Cinético Espacial (KSF) desenvolvido no Imperial College que é baseado na captação do radiofármaco ([18F]FLT) que difere de tecido para tecido. É um filtro capaz de separar tumor e vértebra dos restantes tecidos. Contudo, quando aplicado a imagens de ratinhos implantados com linhas celulares de cancro de HCT116, mesmo quando curvas de actividade ao longo do tempo do próprio ratinho foram usadas como modelo, este não conseguiu obter os mesmos resultados que obtivemos na análise de dados de um paciente com cancro no pâncreas com metastases no fígado onde o filtro foi capaz de distinguir o tumor dos órgãos circundantes. Esta análise pretende ser usada para detectar resposta precoce depois de um ciclo de tratamentos. Como aprendizagem não supervisionada usámos Self-Organizing Maps (SOM). Aplicámos este algoritmo em dados de [18F]FLT-PET de ratinhos. Primeiro aplicámos SOM na análise de dados de HCT116. O objectivo foi alcançado com sucesso, uma vez que os mapas finais conseguiram diferenciar imagens de pré das de pós tratamento. Numa segunda aplicação, usámos SOM com dados de ratinhos implatados com linhas celulares de A2780, SJSA, SN40R2 e HT29 para ver se este conseguia distinguir e classificar os tumores. Conseguimos apenas distinguir SJSA das restantes linhas celulares. Em ambos os estudos, dados de input de SOM eram voxels obtidos de regiões de interesse: tumor, músculo, bexiga, coração e rim. Características dos mapas finais são os padrões de clustering dos voxels de cada tecido. No resultado final, o SOM conseguiu os seguintes clusters: tumor, músculo e bexiga num cluster e coração e rins noutro mais difuso. Quando aplicámos SOM apenas a ROIs sobre os tumores, a separação entre diferentes tumores foi apenas parcialmente conseguida. Numa terceira aplicação usámos este método de classificação nos dados da paciente, para ver se este conseguia distinguir entre pré o pós tratamento, no sentido de poder avaliar se o paciente estaria a responder ou não ao tratamento. Descobrimos que o x algoritmo era capaz efectuar esta tarefa. Aqui o algoritmo agrupou fígado, tumor, vértebra e rins e colocou o coração noutro cluster.2012-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttps://hdl.handle.net/10316/25129https://hdl.handle.net/10316/25129engMadeira, Mariana Simões - Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties. Coimbra, 2012. Tese de MestradoMadeira, Mariana Simõesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2022-01-20T17:49:07Zoai:estudogeral.uc.pt:10316/25129Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:00.227222Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
title Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
spellingShingle Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
Madeira, Mariana Simões
Radionuclídeo
Tomografia por emissão de positrões
Tumores
title_short Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
title_full Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
title_fullStr Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
title_full_unstemmed Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
title_sort Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties
author Madeira, Mariana Simões
author_facet Madeira, Mariana Simões
author_role author
dc.contributor.author.fl_str_mv Madeira, Mariana Simões
dc.subject.por.fl_str_mv Radionuclídeo
Tomografia por emissão de positrões
Tumores
topic Radionuclídeo
Tomografia por emissão de positrões
Tumores
description Nos dias de hoje a informática aplicada à investigação em cancro é de grande importância. Neste trabalho, técnicas de aprendizagem não supervisionada e supervisionada foram aplicadas a dados de [18F]Fluorotimidina – Tomografia por Emissão de Positrões ([18F]FLT-PET). Como aprendizagem supervisionada usámos um filtro chamado Filtro Cinético Espacial (KSF) desenvolvido no Imperial College que é baseado na captação do radiofármaco ([18F]FLT) que difere de tecido para tecido. É um filtro capaz de separar tumor e vértebra dos restantes tecidos. Contudo, quando aplicado a imagens de ratinhos implantados com linhas celulares de cancro de HCT116, mesmo quando curvas de actividade ao longo do tempo do próprio ratinho foram usadas como modelo, este não conseguiu obter os mesmos resultados que obtivemos na análise de dados de um paciente com cancro no pâncreas com metastases no fígado onde o filtro foi capaz de distinguir o tumor dos órgãos circundantes. Esta análise pretende ser usada para detectar resposta precoce depois de um ciclo de tratamentos. Como aprendizagem não supervisionada usámos Self-Organizing Maps (SOM). Aplicámos este algoritmo em dados de [18F]FLT-PET de ratinhos. Primeiro aplicámos SOM na análise de dados de HCT116. O objectivo foi alcançado com sucesso, uma vez que os mapas finais conseguiram diferenciar imagens de pré das de pós tratamento. Numa segunda aplicação, usámos SOM com dados de ratinhos implatados com linhas celulares de A2780, SJSA, SN40R2 e HT29 para ver se este conseguia distinguir e classificar os tumores. Conseguimos apenas distinguir SJSA das restantes linhas celulares. Em ambos os estudos, dados de input de SOM eram voxels obtidos de regiões de interesse: tumor, músculo, bexiga, coração e rim. Características dos mapas finais são os padrões de clustering dos voxels de cada tecido. No resultado final, o SOM conseguiu os seguintes clusters: tumor, músculo e bexiga num cluster e coração e rins noutro mais difuso. Quando aplicámos SOM apenas a ROIs sobre os tumores, a separação entre diferentes tumores foi apenas parcialmente conseguida. Numa terceira aplicação usámos este método de classificação nos dados da paciente, para ver se este conseguia distinguir entre pré o pós tratamento, no sentido de poder avaliar se o paciente estaria a responder ou não ao tratamento. Descobrimos que o x algoritmo era capaz efectuar esta tarefa. Aqui o algoritmo agrupou fígado, tumor, vértebra e rins e colocou o coração noutro cluster.
publishDate 2012
dc.date.none.fl_str_mv 2012-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/25129
https://hdl.handle.net/10316/25129
url https://hdl.handle.net/10316/25129
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Madeira, Mariana Simões - Analysis of non-invasive imaging data using self-organising maps for characterization of tumour physiological and biochemical properties. Coimbra, 2012. Tese de Mestrado
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602336385138688