Forecasting small population monthly fertility and mortality data with seasonal time series methods
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/91961 |
Summary: | Bravo, J. M., & Coelho, E. I. F. (2020). Forecasting small population monthly fertility and mortality data with seasonal time series methods. In W. L. Linhares (Ed.), As Ciências Sociais Aplicadas e a Interface com vários Saberes (Vol. 2, pp. 158-176). Atena. https://doi.org/10.22533/at.ed.79020280112 |
| id |
RCAP_3e1e024d7b7c9e0ed9f9131ba4b2f725 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/91961 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Forecasting small population monthly fertility and mortality data with seasonal time series methodsSmall population forecastsSARIMABacktestingseasonalityState Space modelsSDG 3 - Good Health and Well-beingSDG 11 - Sustainable Cities and CommunitiesBravo, J. M., & Coelho, E. I. F. (2020). Forecasting small population monthly fertility and mortality data with seasonal time series methods. In W. L. Linhares (Ed.), As Ciências Sociais Aplicadas e a Interface com vários Saberes (Vol. 2, pp. 158-176). Atena. https://doi.org/10.22533/at.ed.79020280112Forecasts of small population monthly fertility and mortality data are a critical input in the computation of subnational forecasts of resident population since they determine, together with internal and international net migration, the dynamics of both the population size and its age structure. Demographic time series data typically exhibit strong seasonality patterns at both national and regional levels. In this paper, we evaluate the short-term forecasting accuracy of alternative linear and non-linear time series methods (seasonal ARIMA, Holt-Winters and State Space models) to birth and death monthly forecasting at the local and regional level. We adopt a backtesting time series cross-validation approach considering a multi-step forecasting approach with re-estimation. Additionally, we investigate the model’s performance in terms of forecasting uncertainty by computing the percentage of actual monthly births and death counts which fall out of prediction intervals. We use a time series of monthly birth and death data for the 25 Portuguese NUTS3 regions from 2000 to 2018, disaggregated by sex.AtenaNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBravo, Jorge MiguelCoelho, Edviges Isabel Felizardo2020-01-30T23:16:50Z2020-012020-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersion18application/pdfhttp://hdl.handle.net/10362/91961eng978-85-7247-979-0PURE: 15570109https://doi.org/10.22533/at.ed.79020280112info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:43:13Zoai:run.unl.pt:10362/91961Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:14:36.365177Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Forecasting small population monthly fertility and mortality data with seasonal time series methods |
| title |
Forecasting small population monthly fertility and mortality data with seasonal time series methods |
| spellingShingle |
Forecasting small population monthly fertility and mortality data with seasonal time series methods Bravo, Jorge Miguel Small population forecasts SARIMA Backtesting seasonality State Space models SDG 3 - Good Health and Well-being SDG 11 - Sustainable Cities and Communities |
| title_short |
Forecasting small population monthly fertility and mortality data with seasonal time series methods |
| title_full |
Forecasting small population monthly fertility and mortality data with seasonal time series methods |
| title_fullStr |
Forecasting small population monthly fertility and mortality data with seasonal time series methods |
| title_full_unstemmed |
Forecasting small population monthly fertility and mortality data with seasonal time series methods |
| title_sort |
Forecasting small population monthly fertility and mortality data with seasonal time series methods |
| author |
Bravo, Jorge Miguel |
| author_facet |
Bravo, Jorge Miguel Coelho, Edviges Isabel Felizardo |
| author_role |
author |
| author2 |
Coelho, Edviges Isabel Felizardo |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Bravo, Jorge Miguel Coelho, Edviges Isabel Felizardo |
| dc.subject.por.fl_str_mv |
Small population forecasts SARIMA Backtesting seasonality State Space models SDG 3 - Good Health and Well-being SDG 11 - Sustainable Cities and Communities |
| topic |
Small population forecasts SARIMA Backtesting seasonality State Space models SDG 3 - Good Health and Well-being SDG 11 - Sustainable Cities and Communities |
| description |
Bravo, J. M., & Coelho, E. I. F. (2020). Forecasting small population monthly fertility and mortality data with seasonal time series methods. In W. L. Linhares (Ed.), As Ciências Sociais Aplicadas e a Interface com vários Saberes (Vol. 2, pp. 158-176). Atena. https://doi.org/10.22533/at.ed.79020280112 |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-01-30T23:16:50Z 2020-01 2020-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
book part |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/91961 |
| url |
http://hdl.handle.net/10362/91961 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-85-7247-979-0 PURE: 15570109 https://doi.org/10.22533/at.ed.79020280112 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
18 application/pdf |
| dc.publisher.none.fl_str_mv |
Atena |
| publisher.none.fl_str_mv |
Atena |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596545171193856 |