Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/112294 https://doi.org/10.1007/s10957-023-02253-w |
Summary: | Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of O(1/T ), under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to O(1/ √ T ). These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front. |
id |
RCAP_3d18cfe1e59db97950c2cbd3084d60e0 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/112294 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective OptimizationMulti-objective optimizationPareto frontStochastic optimizationAlternating optimizationStochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of O(1/T ), under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to O(1/ √ T ). These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.Springer Nature2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/112294https://hdl.handle.net/10316/112294https://doi.org/10.1007/s10957-023-02253-weng0022-32391573-2878Liu, SuyunVicente, Luís Filipe de Castro Nunesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-01T10:55:55Zoai:estudogeral.uc.pt:10316/112294Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:04:38.860664Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization |
title |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization |
spellingShingle |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization Liu, Suyun Multi-objective optimization Pareto front Stochastic optimization Alternating optimization |
title_short |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization |
title_full |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization |
title_fullStr |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization |
title_full_unstemmed |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization |
title_sort |
Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization |
author |
Liu, Suyun |
author_facet |
Liu, Suyun Vicente, Luís Filipe de Castro Nunes |
author_role |
author |
author2 |
Vicente, Luís Filipe de Castro Nunes |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Liu, Suyun Vicente, Luís Filipe de Castro Nunes |
dc.subject.por.fl_str_mv |
Multi-objective optimization Pareto front Stochastic optimization Alternating optimization |
topic |
Multi-objective optimization Pareto front Stochastic optimization Alternating optimization |
description |
Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of O(1/T ), under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to O(1/ √ T ). These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/112294 https://hdl.handle.net/10316/112294 https://doi.org/10.1007/s10957-023-02253-w |
url |
https://hdl.handle.net/10316/112294 https://doi.org/10.1007/s10957-023-02253-w |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0022-3239 1573-2878 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602568619556864 |