Export Ready — 

Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization

Bibliographic Details
Main Author: Liu, Suyun
Publication Date: 2023
Other Authors: Vicente, Luís Filipe de Castro Nunes
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/112294
https://doi.org/10.1007/s10957-023-02253-w
Summary: Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of O(1/T ), under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to O(1/ √ T ). These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.
id RCAP_3d18cfe1e59db97950c2cbd3084d60e0
oai_identifier_str oai:estudogeral.uc.pt:10316/112294
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective OptimizationMulti-objective optimizationPareto frontStochastic optimizationAlternating optimizationStochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of O(1/T ), under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to O(1/ √ T ). These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.Springer Nature2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/112294https://hdl.handle.net/10316/112294https://doi.org/10.1007/s10957-023-02253-weng0022-32391573-2878Liu, SuyunVicente, Luís Filipe de Castro Nunesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-01T10:55:55Zoai:estudogeral.uc.pt:10316/112294Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:04:38.860664Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
title Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
spellingShingle Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
Liu, Suyun
Multi-objective optimization
Pareto front
Stochastic optimization
Alternating optimization
title_short Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
title_full Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
title_fullStr Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
title_full_unstemmed Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
title_sort Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
author Liu, Suyun
author_facet Liu, Suyun
Vicente, Luís Filipe de Castro Nunes
author_role author
author2 Vicente, Luís Filipe de Castro Nunes
author2_role author
dc.contributor.author.fl_str_mv Liu, Suyun
Vicente, Luís Filipe de Castro Nunes
dc.subject.por.fl_str_mv Multi-objective optimization
Pareto front
Stochastic optimization
Alternating optimization
topic Multi-objective optimization
Pareto front
Stochastic optimization
Alternating optimization
description Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of O(1/T ), under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to O(1/ √ T ). These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/112294
https://hdl.handle.net/10316/112294
https://doi.org/10.1007/s10957-023-02253-w
url https://hdl.handle.net/10316/112294
https://doi.org/10.1007/s10957-023-02253-w
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-3239
1573-2878
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602568619556864