Export Ready — 

Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery

Bibliographic Details
Main Author: Coscueta, Ezequiel R.
Publication Date: 2021
Other Authors: Reis, Celso A., Pintado, Manuela
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.14/36563
Summary: Phenylethyl isothiocyanate (PEITC) is released from the enzymatic hydrolysis of gluconasturtiin, the most abundant glucosinolate found in watercress (a vegetable from the family Brassicaceae) by the enzyme myrosinase. Among all the isothiocyanates, PEITC is one of the most extensively studied with various biological activities such as antimicrobial, antioxidant and anti-inflammatory. Several studies suggested that PEITC exhibits cancer preventive and therapeutic effects on multiple types of cancers and is one of the isothiocyanates that is being tested in clinical trials. PEITC is highly reactive due to its considerably electrophilic nature. Furthermore, it is hydrophobic and has low stability, bioavailability and bioaccessibility, restricting its use in biomedical and nutraceutical or food applications. Thus, the encapsulation of this agent has the function of overcoming these limitations, promoting its solubility in water, and stabilizing it, preserving its bioactivity. So, polymeric microparticles were developed using chitosan-olive oil-PEITC systems. For this, an optimisation process (factors: olive oil: chitosan ratio and PEITC: chitosan ratio) were implemented through a 3-level (32) factorial experimental design. The responses were: the particle size, zeta-potential, polydisperse index, and entrapment efficiency. The optimal formulation was further characterized by FTIR and biocompatibility in Caco-2 cells. Optimal conditions were olive oil: chitosan and PEITC: chitosan ratios of 1.46 and 0.25, respectively. These microparticles had a size of 629 nm, a zeta-potential of 32.3 mV, a polydispersity index of 0.329, and an entrapment efficiency of 98.49%. We found that the inclusion process affected the optical behaviour of the PEITC, as well as the microparticles themselves and their interaction with the medium. Furthermore, the microparticles did not show cytotoxicity within the therapeutic values of PEITC. Thus, PEITC was microencapsulated with characteristics suitable for potential biomedical, nutraceutical and food applications.
id RCAP_3c813a6eedbcc4e2cdaa8643b6bd43c1
oai_identifier_str oai:repositorio.ucp.pt:10400.14/36563
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Chitosan-olive oil microparticles for phenylethyl isothiocyanate deliveryNanotechnologyNanoparticlePhenylethyl isothiocyanate (PEITC)ChitosanPhenylethyl isothiocyanate (PEITC) is released from the enzymatic hydrolysis of gluconasturtiin, the most abundant glucosinolate found in watercress (a vegetable from the family Brassicaceae) by the enzyme myrosinase. Among all the isothiocyanates, PEITC is one of the most extensively studied with various biological activities such as antimicrobial, antioxidant and anti-inflammatory. Several studies suggested that PEITC exhibits cancer preventive and therapeutic effects on multiple types of cancers and is one of the isothiocyanates that is being tested in clinical trials. PEITC is highly reactive due to its considerably electrophilic nature. Furthermore, it is hydrophobic and has low stability, bioavailability and bioaccessibility, restricting its use in biomedical and nutraceutical or food applications. Thus, the encapsulation of this agent has the function of overcoming these limitations, promoting its solubility in water, and stabilizing it, preserving its bioactivity. So, polymeric microparticles were developed using chitosan-olive oil-PEITC systems. For this, an optimisation process (factors: olive oil: chitosan ratio and PEITC: chitosan ratio) were implemented through a 3-level (32) factorial experimental design. The responses were: the particle size, zeta-potential, polydisperse index, and entrapment efficiency. The optimal formulation was further characterized by FTIR and biocompatibility in Caco-2 cells. Optimal conditions were olive oil: chitosan and PEITC: chitosan ratios of 1.46 and 0.25, respectively. These microparticles had a size of 629 nm, a zeta-potential of 32.3 mV, a polydispersity index of 0.329, and an entrapment efficiency of 98.49%. We found that the inclusion process affected the optical behaviour of the PEITC, as well as the microparticles themselves and their interaction with the medium. Furthermore, the microparticles did not show cytotoxicity within the therapeutic values of PEITC. Thus, PEITC was microencapsulated with characteristics suitable for potential biomedical, nutraceutical and food applications.VeritatiCoscueta, Ezequiel R.Reis, Celso A.Pintado, Manuela2022-01-27T18:10:24Z2021-042021-04-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.14/36563enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T14:47:14Zoai:repositorio.ucp.pt:10400.14/36563Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T02:07:47.977178Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
title Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
spellingShingle Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
Coscueta, Ezequiel R.
Nanotechnology
Nanoparticle
Phenylethyl isothiocyanate (PEITC)
Chitosan
title_short Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
title_full Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
title_fullStr Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
title_full_unstemmed Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
title_sort Chitosan-olive oil microparticles for phenylethyl isothiocyanate delivery
author Coscueta, Ezequiel R.
author_facet Coscueta, Ezequiel R.
Reis, Celso A.
Pintado, Manuela
author_role author
author2 Reis, Celso A.
Pintado, Manuela
author2_role author
author
dc.contributor.none.fl_str_mv Veritati
dc.contributor.author.fl_str_mv Coscueta, Ezequiel R.
Reis, Celso A.
Pintado, Manuela
dc.subject.por.fl_str_mv Nanotechnology
Nanoparticle
Phenylethyl isothiocyanate (PEITC)
Chitosan
topic Nanotechnology
Nanoparticle
Phenylethyl isothiocyanate (PEITC)
Chitosan
description Phenylethyl isothiocyanate (PEITC) is released from the enzymatic hydrolysis of gluconasturtiin, the most abundant glucosinolate found in watercress (a vegetable from the family Brassicaceae) by the enzyme myrosinase. Among all the isothiocyanates, PEITC is one of the most extensively studied with various biological activities such as antimicrobial, antioxidant and anti-inflammatory. Several studies suggested that PEITC exhibits cancer preventive and therapeutic effects on multiple types of cancers and is one of the isothiocyanates that is being tested in clinical trials. PEITC is highly reactive due to its considerably electrophilic nature. Furthermore, it is hydrophobic and has low stability, bioavailability and bioaccessibility, restricting its use in biomedical and nutraceutical or food applications. Thus, the encapsulation of this agent has the function of overcoming these limitations, promoting its solubility in water, and stabilizing it, preserving its bioactivity. So, polymeric microparticles were developed using chitosan-olive oil-PEITC systems. For this, an optimisation process (factors: olive oil: chitosan ratio and PEITC: chitosan ratio) were implemented through a 3-level (32) factorial experimental design. The responses were: the particle size, zeta-potential, polydisperse index, and entrapment efficiency. The optimal formulation was further characterized by FTIR and biocompatibility in Caco-2 cells. Optimal conditions were olive oil: chitosan and PEITC: chitosan ratios of 1.46 and 0.25, respectively. These microparticles had a size of 629 nm, a zeta-potential of 32.3 mV, a polydispersity index of 0.329, and an entrapment efficiency of 98.49%. We found that the inclusion process affected the optical behaviour of the PEITC, as well as the microparticles themselves and their interaction with the medium. Furthermore, the microparticles did not show cytotoxicity within the therapeutic values of PEITC. Thus, PEITC was microencapsulated with characteristics suitable for potential biomedical, nutraceutical and food applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
2021-04-01T00:00:00Z
2022-01-27T18:10:24Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/36563
url http://hdl.handle.net/10400.14/36563
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601239106977792