Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10400.22/4700 |
Resumo: | Numa Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico. |
id |
RCAP_3c4dba6610e9a3638921a6e2fffab872 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/4700 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbiaRedes neuronais artificiaisDigestão anaeróbiaBiogásTratamento de águas residuaisArtificial neural networksAnaerobic digestionBiogasMethaneWastewaters treatmentNuma Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico.Instituto Politécnico do Porto. Instituto Superior de Engenharia do PortoSilva, JaimeREPOSITÓRIO P.PORTORocha, Hélder Tiago Ferreira da2014-07-03T15:11:21Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/4700urn:tid:201813572porinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:28:13Zoai:recipp.ipp.pt:10400.22/4700Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:56:03.515700Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia |
title |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia |
spellingShingle |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia Rocha, Hélder Tiago Ferreira da Redes neuronais artificiais Digestão anaeróbia Biogás Tratamento de águas residuais Artificial neural networks Anaerobic digestion Biogas Methane Wastewaters treatment |
title_short |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia |
title_full |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia |
title_fullStr |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia |
title_full_unstemmed |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia |
title_sort |
Utilização de redes neuronais artificiais na gestão de processos de digestão anaeróbia |
author |
Rocha, Hélder Tiago Ferreira da |
author_facet |
Rocha, Hélder Tiago Ferreira da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Jaime REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Rocha, Hélder Tiago Ferreira da |
dc.subject.por.fl_str_mv |
Redes neuronais artificiais Digestão anaeróbia Biogás Tratamento de águas residuais Artificial neural networks Anaerobic digestion Biogas Methane Wastewaters treatment |
topic |
Redes neuronais artificiais Digestão anaeróbia Biogás Tratamento de águas residuais Artificial neural networks Anaerobic digestion Biogas Methane Wastewaters treatment |
description |
Numa Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z 2014-07-03T15:11:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/4700 urn:tid:201813572 |
url |
http://hdl.handle.net/10400.22/4700 |
identifier_str_mv |
urn:tid:201813572 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto |
publisher.none.fl_str_mv |
Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600763407892480 |