A note on stability of impulsive scalar delay differential equations

Bibliographic Details
Main Author: Faria, Teresa
Publication Date: 2016
Other Authors: Oliveira, José J.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/44129
Summary: For a class of scalar delay differential equations with impulses and satisfying a Yorke-type condition, criteria for the global asymptotic stability of the zero solution are established. These equations possess a non-delayed feedback term, which will be used to refine the general results on stability presented in recent literature. The usual requirements on the impulses are also relaxed. As an application, sufficient conditions for the global attractivity of a periodic solution for an impulsive periodic model are given.
id RCAP_3a553b270438b7536d66a3c4f77c16a6
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/44129
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A note on stability of impulsive scalar delay differential equationsDelay differential equationImpulsesYorke conditionGlobal attractivityCiências Naturais::MatemáticasScience & TechnologyFor a class of scalar delay differential equations with impulses and satisfying a Yorke-type condition, criteria for the global asymptotic stability of the zero solution are established. These equations possess a non-delayed feedback term, which will be used to refine the general results on stability presented in recent literature. The usual requirements on the impulses are also relaxed. As an application, sufficient conditions for the global attractivity of a periodic solution for an impulsive periodic model are given.This research was supported by Fundacao para a Ciencia e a Tecnologia (Portugal), under the Projects UID/MAT/04561/2013 (T. Faria) and UID/MAT/00013/2013 (J. J. Oliveira).University Szeged, Bolyai InstituteUniversidade do MinhoFaria, TeresaOliveira, José J.2016-092016-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/44129eng1417-387510.14232/ejqtde.2016.1.69http://www.math.u-szeged.hu/ejqtde/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:48:17Zoai:repositorium.sdum.uminho.pt:1822/44129Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:58:58.642424Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A note on stability of impulsive scalar delay differential equations
title A note on stability of impulsive scalar delay differential equations
spellingShingle A note on stability of impulsive scalar delay differential equations
Faria, Teresa
Delay differential equation
Impulses
Yorke condition
Global attractivity
Ciências Naturais::Matemáticas
Science & Technology
title_short A note on stability of impulsive scalar delay differential equations
title_full A note on stability of impulsive scalar delay differential equations
title_fullStr A note on stability of impulsive scalar delay differential equations
title_full_unstemmed A note on stability of impulsive scalar delay differential equations
title_sort A note on stability of impulsive scalar delay differential equations
author Faria, Teresa
author_facet Faria, Teresa
Oliveira, José J.
author_role author
author2 Oliveira, José J.
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Faria, Teresa
Oliveira, José J.
dc.subject.por.fl_str_mv Delay differential equation
Impulses
Yorke condition
Global attractivity
Ciências Naturais::Matemáticas
Science & Technology
topic Delay differential equation
Impulses
Yorke condition
Global attractivity
Ciências Naturais::Matemáticas
Science & Technology
description For a class of scalar delay differential equations with impulses and satisfying a Yorke-type condition, criteria for the global asymptotic stability of the zero solution are established. These equations possess a non-delayed feedback term, which will be used to refine the general results on stability presented in recent literature. The usual requirements on the impulses are also relaxed. As an application, sufficient conditions for the global attractivity of a periodic solution for an impulsive periodic model are given.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
2016-09-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/44129
url http://hdl.handle.net/1822/44129
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1417-3875
10.14232/ejqtde.2016.1.69
http://www.math.u-szeged.hu/ejqtde/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv University Szeged, Bolyai Institute
publisher.none.fl_str_mv University Szeged, Bolyai Institute
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595020995723264