Quantum error correction via noise guessing decoding

Bibliographic Details
Main Author: Cruz, D.
Publication Date: 2023
Other Authors: Monteiro, F. A., Coutinho, B. C.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10071/30561
Summary: Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation. Practical quantum error correction codes, such as stabilizer codes, are generally structured to suit a specific use, and present rigid code lengths and code rates. This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime, for any chosen code length when the code rate is sufficiently high. A recently proposed strategy for decoding classical codes called GRAND (guessing random additive noise decoding) opened doors to efficiently decode classical random linear codes (RLCs) performing near the maximum rate of the finite blocklength regime. By using noise statistics, GRAND is a noise-centric efficient universal decoder for classical codes, provided that a simple code membership test exists. These conditions are particularly suitable for quantum systems, and therefore the paper extends these concepts to quantum random linear codes (QRLCs), which were known to be possible to construct but whose decoding was not yet feasible. By combining QRLCs and a newly proposed quantum-GRAND, this work shows that it is possible to decode QECCs that are easy to adapt to changing conditions. The paper starts by assessing the minimum number of gates in the coding circuit needed to reach the QRLCs’ asymptotic performance, and subsequently proposes a quantum-GRAND algorithm that makes use of quantum noise statistics, not only to build an adaptive code membership test, but also to efficiently implement syndrome decoding.
id RCAP_380fbfcbf85fc99cf06048e0c7ec0486
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/30561
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Quantum error correction via noise guessing decodingGRANDML decodingQuantum error correction codesShort codesSyndrome decodingQuantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation. Practical quantum error correction codes, such as stabilizer codes, are generally structured to suit a specific use, and present rigid code lengths and code rates. This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime, for any chosen code length when the code rate is sufficiently high. A recently proposed strategy for decoding classical codes called GRAND (guessing random additive noise decoding) opened doors to efficiently decode classical random linear codes (RLCs) performing near the maximum rate of the finite blocklength regime. By using noise statistics, GRAND is a noise-centric efficient universal decoder for classical codes, provided that a simple code membership test exists. These conditions are particularly suitable for quantum systems, and therefore the paper extends these concepts to quantum random linear codes (QRLCs), which were known to be possible to construct but whose decoding was not yet feasible. By combining QRLCs and a newly proposed quantum-GRAND, this work shows that it is possible to decode QECCs that are easy to adapt to changing conditions. The paper starts by assessing the minimum number of gates in the coding circuit needed to reach the QRLCs’ asymptotic performance, and subsequently proposes a quantum-GRAND algorithm that makes use of quantum noise statistics, not only to build an adaptive code membership test, but also to efficiently implement syndrome decoding.IEEE2024-01-24T09:16:41Z2023-01-01T00:00:00Z20232024-01-24T09:13:31Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/30561eng2169-353610.1109/ACCESS.2023.3327214Cruz, D.Monteiro, F. A.Coutinho, B. C.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:33:59Zoai:repositorio.iscte-iul.pt:10071/30561Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:01:00.128042Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Quantum error correction via noise guessing decoding
title Quantum error correction via noise guessing decoding
spellingShingle Quantum error correction via noise guessing decoding
Cruz, D.
GRAND
ML decoding
Quantum error correction codes
Short codes
Syndrome decoding
title_short Quantum error correction via noise guessing decoding
title_full Quantum error correction via noise guessing decoding
title_fullStr Quantum error correction via noise guessing decoding
title_full_unstemmed Quantum error correction via noise guessing decoding
title_sort Quantum error correction via noise guessing decoding
author Cruz, D.
author_facet Cruz, D.
Monteiro, F. A.
Coutinho, B. C.
author_role author
author2 Monteiro, F. A.
Coutinho, B. C.
author2_role author
author
dc.contributor.author.fl_str_mv Cruz, D.
Monteiro, F. A.
Coutinho, B. C.
dc.subject.por.fl_str_mv GRAND
ML decoding
Quantum error correction codes
Short codes
Syndrome decoding
topic GRAND
ML decoding
Quantum error correction codes
Short codes
Syndrome decoding
description Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation. Practical quantum error correction codes, such as stabilizer codes, are generally structured to suit a specific use, and present rigid code lengths and code rates. This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime, for any chosen code length when the code rate is sufficiently high. A recently proposed strategy for decoding classical codes called GRAND (guessing random additive noise decoding) opened doors to efficiently decode classical random linear codes (RLCs) performing near the maximum rate of the finite blocklength regime. By using noise statistics, GRAND is a noise-centric efficient universal decoder for classical codes, provided that a simple code membership test exists. These conditions are particularly suitable for quantum systems, and therefore the paper extends these concepts to quantum random linear codes (QRLCs), which were known to be possible to construct but whose decoding was not yet feasible. By combining QRLCs and a newly proposed quantum-GRAND, this work shows that it is possible to decode QECCs that are easy to adapt to changing conditions. The paper starts by assessing the minimum number of gates in the coding circuit needed to reach the QRLCs’ asymptotic performance, and subsequently proposes a quantum-GRAND algorithm that makes use of quantum noise statistics, not only to build an adaptive code membership test, but also to efficiently implement syndrome decoding.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01T00:00:00Z
2023
2024-01-24T09:16:41Z
2024-01-24T09:13:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/30561
url http://hdl.handle.net/10071/30561
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2169-3536
10.1109/ACCESS.2023.3327214
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597130759995392