Length of Stay in Intensive Care Units - A Case Base Evaluation

Bibliographic Details
Main Author: Silva, Ana
Publication Date: 2016
Other Authors: Vicente, Henrique, Abelha, António, Santos, M. Filipe, Machado, José, Neves, João, Neves, José
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10174/19710
https://doi.org/10.3233/978-1-61499-674-3-191
Summary: As a matter of fact, an Intensive Care Unit (ICU) stands for a hospital facility where patients require close observation and monitoring. Indeed, predicting Length-of-Stay (LoS) at ICUs is essential not only to provide them with improved Quality-of-Care, but also to help the hospital management to cope with hospital resources. Therefore, in this work one`s aim is to present an Artificial Intelligence based Decision Support System to assist on the prediction of LoS at ICUs, which will be centered on a formal framework based on a Logic Programming acquaintance for knowledge representation and reasoning, complemented with a Case Based approach to computing, and able to handle unknown, incomplete, or even contradictory data, information or knowledge.
id RCAP_379fd0bd7a4ac951236d6a72d719b64f
oai_identifier_str oai:dspace.uevora.pt:10174/19710
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Length of Stay in Intensive Care Units - A Case Base EvaluationIntensive Care UnitLength of StayKnowledge Representation and ReasoningLogic ProgrammingCase-Based ReasoningQuality of CareAs a matter of fact, an Intensive Care Unit (ICU) stands for a hospital facility where patients require close observation and monitoring. Indeed, predicting Length-of-Stay (LoS) at ICUs is essential not only to provide them with improved Quality-of-Care, but also to help the hospital management to cope with hospital resources. Therefore, in this work one`s aim is to present an Artificial Intelligence based Decision Support System to assist on the prediction of LoS at ICUs, which will be centered on a formal framework based on a Logic Programming acquaintance for knowledge representation and reasoning, complemented with a Case Based approach to computing, and able to handle unknown, incomplete, or even contradictory data, information or knowledge.IOS Press2017-01-10T16:36:43Z2017-01-102016-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionhttp://hdl.handle.net/10174/19710http://hdl.handle.net/10174/19710https://doi.org/10.3233/978-1-61499-674-3-191engSilva, A., Vicente, H., Abelha, A., Santos, M. F., Machado, J., Neves, J. & Neves, J., Length of Stay in Intensive Care Units – A Case Base Evaluation. In H. Fujita & G. A. Papadopoulos Eds., New Trends in Software Methodologies, Tools and Techniques, Frontiers in Artificial Intelligence and Applications, Vol. 286, pp. 191–202, IOS Press, Amsterdam, Netherlands, 2016.Amsterdam, Netherlands978-1-61499-673-60922-6389http://ebooks.iospress.nl/publication/444411ª12silva.anapp@gmail.comhvicente@uevora.ptabelha@di.uminho.ptmfs@dsi.uminho.ptjmac@di.uminho.ptjoaocpneves@gmail.comjneves@di.uminho.ptSilva, AnaVicente, HenriqueAbelha, AntónioSantos, M. FilipeMachado, JoséNeves, JoãoNeves, Joséinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T19:07:34Zoai:dspace.uevora.pt:10174/19710Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:10:58.636418Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Length of Stay in Intensive Care Units - A Case Base Evaluation
title Length of Stay in Intensive Care Units - A Case Base Evaluation
spellingShingle Length of Stay in Intensive Care Units - A Case Base Evaluation
Silva, Ana
Intensive Care Unit
Length of Stay
Knowledge Representation and Reasoning
Logic Programming
Case-Based Reasoning
Quality of Care
title_short Length of Stay in Intensive Care Units - A Case Base Evaluation
title_full Length of Stay in Intensive Care Units - A Case Base Evaluation
title_fullStr Length of Stay in Intensive Care Units - A Case Base Evaluation
title_full_unstemmed Length of Stay in Intensive Care Units - A Case Base Evaluation
title_sort Length of Stay in Intensive Care Units - A Case Base Evaluation
author Silva, Ana
author_facet Silva, Ana
Vicente, Henrique
Abelha, António
Santos, M. Filipe
Machado, José
Neves, João
Neves, José
author_role author
author2 Vicente, Henrique
Abelha, António
Santos, M. Filipe
Machado, José
Neves, João
Neves, José
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Ana
Vicente, Henrique
Abelha, António
Santos, M. Filipe
Machado, José
Neves, João
Neves, José
dc.subject.por.fl_str_mv Intensive Care Unit
Length of Stay
Knowledge Representation and Reasoning
Logic Programming
Case-Based Reasoning
Quality of Care
topic Intensive Care Unit
Length of Stay
Knowledge Representation and Reasoning
Logic Programming
Case-Based Reasoning
Quality of Care
description As a matter of fact, an Intensive Care Unit (ICU) stands for a hospital facility where patients require close observation and monitoring. Indeed, predicting Length-of-Stay (LoS) at ICUs is essential not only to provide them with improved Quality-of-Care, but also to help the hospital management to cope with hospital resources. Therefore, in this work one`s aim is to present an Artificial Intelligence based Decision Support System to assist on the prediction of LoS at ICUs, which will be centered on a formal framework based on a Logic Programming acquaintance for knowledge representation and reasoning, complemented with a Case Based approach to computing, and able to handle unknown, incomplete, or even contradictory data, information or knowledge.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2017-01-10T16:36:43Z
2017-01-10
dc.type.driver.fl_str_mv book part
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/19710
http://hdl.handle.net/10174/19710
https://doi.org/10.3233/978-1-61499-674-3-191
url http://hdl.handle.net/10174/19710
https://doi.org/10.3233/978-1-61499-674-3-191
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Silva, A., Vicente, H., Abelha, A., Santos, M. F., Machado, J., Neves, J. & Neves, J., Length of Stay in Intensive Care Units – A Case Base Evaluation. In H. Fujita & G. A. Papadopoulos Eds., New Trends in Software Methodologies, Tools and Techniques, Frontiers in Artificial Intelligence and Applications, Vol. 286, pp. 191–202, IOS Press, Amsterdam, Netherlands, 2016.
Amsterdam, Netherlands
978-1-61499-673-6
0922-6389
http://ebooks.iospress.nl/publication/44441

12
silva.anapp@gmail.com
hvicente@uevora.pt
abelha@di.uminho.pt
mfs@dsi.uminho.pt
jmac@di.uminho.pt
joaocpneves@gmail.com
jneves@di.uminho.pt
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592597625438208