On the identification of material constitutive model parameters using machine learning algorithms
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/34583 |
Summary: | This work aims to evaluate the predictive performance of various Machine Learning algorithms when applied to the prediction of material constitutive parameters, particularly the parameters of the Swift hardening law. For this, datasets were generated from the results of the numerical simulations of uniaxial tensile tests. The Machine Learning algorithms considered for this study are: Gaussian Process, Multi-layer Perceptron, Support Vector Regression, Decision Tree and Random Forest. These algorithms were used to train metamodels based on training sets considering different numbers of materials and input parameters, which were then used to predict the hardening law parameters. The Gaussian Process algorithm achieved the overall best predictive performances. The results obtained show the potential of Machine Learning algorithms for application on the identification of material constitutive parameters. |
id |
RCAP_37378baf327f4cdd38b121d35f08e57e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/34583 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On the identification of material constitutive model parameters using machine learning algorithmsSheet Metal FormingMachine LearningParameter IdentificationThis work aims to evaluate the predictive performance of various Machine Learning algorithms when applied to the prediction of material constitutive parameters, particularly the parameters of the Swift hardening law. For this, datasets were generated from the results of the numerical simulations of uniaxial tensile tests. The Machine Learning algorithms considered for this study are: Gaussian Process, Multi-layer Perceptron, Support Vector Regression, Decision Tree and Random Forest. These algorithms were used to train metamodels based on training sets considering different numbers of materials and input parameters, which were then used to predict the hardening law parameters. The Gaussian Process algorithm achieved the overall best predictive performances. The results obtained show the potential of Machine Learning algorithms for application on the identification of material constitutive parameters.Trans Tech Publications Ltd2022-09-09T11:17:04Z2022-07-01T00:00:00Z2022-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34583eng1013-982610.4028/p-5hf550Marques, ArmandoPereira, AndréRibeiro, BernardetePrates, Pedro A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:38:49Zoai:ria.ua.pt:10773/34583Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:15:27.874725Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On the identification of material constitutive model parameters using machine learning algorithms |
title |
On the identification of material constitutive model parameters using machine learning algorithms |
spellingShingle |
On the identification of material constitutive model parameters using machine learning algorithms Marques, Armando Sheet Metal Forming Machine Learning Parameter Identification |
title_short |
On the identification of material constitutive model parameters using machine learning algorithms |
title_full |
On the identification of material constitutive model parameters using machine learning algorithms |
title_fullStr |
On the identification of material constitutive model parameters using machine learning algorithms |
title_full_unstemmed |
On the identification of material constitutive model parameters using machine learning algorithms |
title_sort |
On the identification of material constitutive model parameters using machine learning algorithms |
author |
Marques, Armando |
author_facet |
Marques, Armando Pereira, André Ribeiro, Bernardete Prates, Pedro A. |
author_role |
author |
author2 |
Pereira, André Ribeiro, Bernardete Prates, Pedro A. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Marques, Armando Pereira, André Ribeiro, Bernardete Prates, Pedro A. |
dc.subject.por.fl_str_mv |
Sheet Metal Forming Machine Learning Parameter Identification |
topic |
Sheet Metal Forming Machine Learning Parameter Identification |
description |
This work aims to evaluate the predictive performance of various Machine Learning algorithms when applied to the prediction of material constitutive parameters, particularly the parameters of the Swift hardening law. For this, datasets were generated from the results of the numerical simulations of uniaxial tensile tests. The Machine Learning algorithms considered for this study are: Gaussian Process, Multi-layer Perceptron, Support Vector Regression, Decision Tree and Random Forest. These algorithms were used to train metamodels based on training sets considering different numbers of materials and input parameters, which were then used to predict the hardening law parameters. The Gaussian Process algorithm achieved the overall best predictive performances. The results obtained show the potential of Machine Learning algorithms for application on the identification of material constitutive parameters. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-09T11:17:04Z 2022-07-01T00:00:00Z 2022-07 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/34583 |
url |
http://hdl.handle.net/10773/34583 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1013-9826 10.4028/p-5hf550 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Trans Tech Publications Ltd |
publisher.none.fl_str_mv |
Trans Tech Publications Ltd |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594441895510016 |