Effectiveness in Retrieving Legal Precedents
Main Author: | |
---|---|
Publication Date: | 2025 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/179711 |
Summary: | Mentzingen, H., António, N., & Bação, F. (2025). Effectiveness in Retrieving Legal Precedents: Exploring Text Summarization and Cutting-Edge Language Models Toward a Cost-Efficient Approach. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-025-09440-2 --- The authors acknowledge Brazil's Superintendency of Private Insurance for supporting and providing data for this work. This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS) (https://doi.org/10.54499/UIDB/04152/2020). |
id |
RCAP_3607064582d92d60a7d1e05501b8d2fd |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/179711 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Effectiveness in Retrieving Legal PrecedentsExploring Text Summarization and Cutting-Edge Language Models Toward a Cost-Efficient ApproachTransfer learninglegal precedent retrievalTransformerlanguage modelcost-effectivenessLawArtificial IntelligenceSDG 16 - Peace, Justice and Strong InstitutionsMentzingen, H., António, N., & Bação, F. (2025). Effectiveness in Retrieving Legal Precedents: Exploring Text Summarization and Cutting-Edge Language Models Toward a Cost-Efficient Approach. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-025-09440-2 --- The authors acknowledge Brazil's Superintendency of Private Insurance for supporting and providing data for this work. This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS) (https://doi.org/10.54499/UIDB/04152/2020).This study examines the interplay between text summarization techniques and embeddings from Language Models (LMs) in constructing expert systems dedicated to the retrieval of legal precedents, with an emphasis on achieving cost-efficiency. Grounded in the growing domain of Artificial Intelligence (AI) in law, our research confronts the perennial challenges of computational resource optimization and the reliability of precedent identification. Through Named Entity Recognition (NER) and part-of-speech (POS) tagging, we juxtapose various summarization methods to distill legal documents into a convenient form that retains their essence. We investigate the effectiveness of these methods in conjunction with state-of-the-art embeddings based on Large Language Models (LLMs), particularly ADA from OpenAI, which is trained on a wide range of general-purpose texts. Utilizing a dataset from one of Brazil’s administrative courts, we explore the efficacy of embeddings derived from a Transformer model tailored to legal corpora against those from ADA, gauging the impact of parameter size, training corpora, and context window on retrieving legal precedents. Our findings suggest that while the full text embedded with ADA’s extensive context window leads in retrieval performance, a balanced combination of POS-derived summaries and ADA embeddings presents a compelling trade-off between performance and resource expenditure, advocating for an efficient, scalable, intelligent system suitable for broad legal applications. This study contributes to the literature by delineating an optimal approach that harmonizes the dual imperatives of computational frugality and retrieval accuracy, propelling the legal field toward more strategic AI utilization.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNMentzingen, HugoAntónio, NunoBação, Fernando2025-02-24T23:04:16Z2025-02-202025-02-20T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21application/pdfhttp://hdl.handle.net/10362/179711eng0924-8463PURE: 109233120https://doi.org/10.1007/s10506-025-09440-2info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-03T01:38:36Zoai:run.unl.pt:10362/179711Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:06:58.181447Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Effectiveness in Retrieving Legal Precedents Exploring Text Summarization and Cutting-Edge Language Models Toward a Cost-Efficient Approach |
title |
Effectiveness in Retrieving Legal Precedents |
spellingShingle |
Effectiveness in Retrieving Legal Precedents Mentzingen, Hugo Transfer learning legal precedent retrieval Transformer language model cost-effectiveness Law Artificial Intelligence SDG 16 - Peace, Justice and Strong Institutions |
title_short |
Effectiveness in Retrieving Legal Precedents |
title_full |
Effectiveness in Retrieving Legal Precedents |
title_fullStr |
Effectiveness in Retrieving Legal Precedents |
title_full_unstemmed |
Effectiveness in Retrieving Legal Precedents |
title_sort |
Effectiveness in Retrieving Legal Precedents |
author |
Mentzingen, Hugo |
author_facet |
Mentzingen, Hugo António, Nuno Bação, Fernando |
author_role |
author |
author2 |
António, Nuno Bação, Fernando |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Mentzingen, Hugo António, Nuno Bação, Fernando |
dc.subject.por.fl_str_mv |
Transfer learning legal precedent retrieval Transformer language model cost-effectiveness Law Artificial Intelligence SDG 16 - Peace, Justice and Strong Institutions |
topic |
Transfer learning legal precedent retrieval Transformer language model cost-effectiveness Law Artificial Intelligence SDG 16 - Peace, Justice and Strong Institutions |
description |
Mentzingen, H., António, N., & Bação, F. (2025). Effectiveness in Retrieving Legal Precedents: Exploring Text Summarization and Cutting-Edge Language Models Toward a Cost-Efficient Approach. Artificial Intelligence and Law. https://doi.org/10.1007/s10506-025-09440-2 --- The authors acknowledge Brazil's Superintendency of Private Insurance for supporting and providing data for this work. This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS) (https://doi.org/10.54499/UIDB/04152/2020). |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-02-24T23:04:16Z 2025-02-20 2025-02-20T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/179711 |
url |
http://hdl.handle.net/10362/179711 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0924-8463 PURE: 109233120 https://doi.org/10.1007/s10506-025-09440-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600402819383296 |