Evaluating COVID-19 in Portugal: Bootstrap confidence interval
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10071/31289 |
Resumo: | In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks. |
| id |
RCAP_35dbfd5cc457fd868a0effb53f1e4cec |
|---|---|
| oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/31289 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Evaluating COVID-19 in Portugal: Bootstrap confidence intervalCOVID-19Bootstrap confidence intervalSAIRP modelCentre of Portugal regionIn this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks.American Institute of Mathematical Sciences (AIMS)2024-03-11T11:24:36Z2024-01-01T00:00:00Z20242024-03-11T11:23:41Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/31289eng2473-698810.3934/math.2024136Tedim, S.Afreixo, V.Felgueiras, M.Leitão, R. P.Pinheiro, S. J.Silva, C. J.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:10:31Zoai:repositorio.iscte-iul.pt:10071/31289Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:17:13.735067Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
| title |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
| spellingShingle |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval Tedim, S. COVID-19 Bootstrap confidence interval SAIRP model Centre of Portugal region |
| title_short |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
| title_full |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
| title_fullStr |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
| title_full_unstemmed |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
| title_sort |
Evaluating COVID-19 in Portugal: Bootstrap confidence interval |
| author |
Tedim, S. |
| author_facet |
Tedim, S. Afreixo, V. Felgueiras, M. Leitão, R. P. Pinheiro, S. J. Silva, C. J. |
| author_role |
author |
| author2 |
Afreixo, V. Felgueiras, M. Leitão, R. P. Pinheiro, S. J. Silva, C. J. |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Tedim, S. Afreixo, V. Felgueiras, M. Leitão, R. P. Pinheiro, S. J. Silva, C. J. |
| dc.subject.por.fl_str_mv |
COVID-19 Bootstrap confidence interval SAIRP model Centre of Portugal region |
| topic |
COVID-19 Bootstrap confidence interval SAIRP model Centre of Portugal region |
| description |
In this paper, we consider a compartmental model to fit the real data of confirmed active cases with COVID-19 in Portugal, from March 2, 2020 until September 10, 2021 in the Primary Care Cluster in Aveiro region, ACES BV, reported to the Public Health Unit. The model includes a deterministic component based on ordinary differential equations and a stochastic component based on bootstrap methods in regression. The main goal of this work is to take into account the variability underlying the data set and analyse the estimation accuracy of the model using a residual bootstrapped approach in order to compute confidence intervals for the prediction of COVID-19 confirmed active cases. All numerical simulations are performed in R environment ( version. 4.0.5). The proposed algorithm can be used, after a suitable adaptation, in other communicable diseases and outbreaks. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-03-11T11:24:36Z 2024-01-01T00:00:00Z 2024 2024-03-11T11:23:41Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/31289 |
| url |
http://hdl.handle.net/10071/31289 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
2473-6988 10.3934/math.2024136 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences (AIMS) |
| publisher.none.fl_str_mv |
American Institute of Mathematical Sciences (AIMS) |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597310224826368 |