Using Neuroevolution to Design Neural Networks [special issue]

Detalhes bibliográficos
Autor(a) principal: Castelli, Mauro
Data de Publicação: 2020
Outros Autores: Medvet, Eric, Trujillo, Leonardo, Manzoni, Luca
Tipo de documento: Outros
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/168081
Resumo: Castelli, M. (Guest ed.), Medvet, E. (Guest ed.), Trujillo, L., & Manzoni, L. (Guest ed.) (2020). Using Neuroevolution to Design Neural Networks. Computational Intelligence And Neuroscience, 2020.
id RCAP_353d64cbe5bbbe79a34618bfc4c24c1a
oai_identifier_str oai:run.unl.pt:10362/168081
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Using Neuroevolution to Design Neural Networks [special issue]Castelli, M. (Guest ed.), Medvet, E. (Guest ed.), Trujillo, L., & Manzoni, L. (Guest ed.) (2020). Using Neuroevolution to Design Neural Networks. Computational Intelligence And Neuroscience, 2020.Deep learning (DL) has gained popularity in the field of machine learning, with DL-based models nowadays used to address complex problems across many different domains. In DL, the training process of a neural network (NN) is performed through variants of the stochastic gradient descent algorithm. A different yet not fully-explored approach comes from the field of neuroevolution, which uses evolutionary algorithms to optimize NNs. Neuroevolution has the potential to outperform DL-based models as it can optimize the entire NN architecture, its hyperparameters, and the learning algorithm. Independence from the gradient descent algorithm allows neuroevolution to learn NN hyperparameters that are novel and diverse, two concepts that are deemed important in the discovery of optimal solutions. All in all, the availability of computational resources gives researchers the possibility to fully exploit the hidden potential of neuroevolution and create NN architectures that are tailored to particular problems which need to be solved. Developments in the area of neuroevolution also allow researchers to better understand the relationship between the human brain and computational intelligence models that are inspired by its functioning, which can lead to the development of a new generation of NNs. This special issue invites original research articles that focus on the design and implementation of new neuroevolution methods and techniques and consider their applications for solving complex optimization problems. The aim of this special issue is to contribute to the development of new methods and advances in the field of neuroevolution, both in the theoretical sense and in the application of these results. Research that discusses new generations of NNs, such as fuzzy NNs, attention-based NNs, and modular NNs, is particularly encouraged. Review articles that summarize the state of the art in neuroevolution are also welcome. Potential topics include but are not limited to the following: New methods and algorithms for learning the weights of a NN which overcome the limitations of the traditional gradient descent approach New methods and techniques in evolutionary computation that can improve the design process of a NN in terms of architecture and hyperparameters Definitions of methods that can efficiently explore the (infinite) search space of NN architectures Applications of newly-defined neuroevolution techniques for addressing complex real-world optimization problems Methods that overcome the limitations of existing neuroevolution methods, providing a significant step towards the automatic design of a NN architecture Hybrid methods that combine evolutionary computation techniques with optimization paradigms Analysis of the complexity of NN evolutionary algorithms (EAs) Run time analysis of EAs for NNs optimizationInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNCastelli, MauroMedvet, EricTrujillo, LeonardoManzoni, Luca2024-06-01T00:34:59Z2020-05-012020-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/other27application/pdfhttp://hdl.handle.net/10362/168081eng1687-5265PURE: 92479704info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-06-10T01:52:18Zoai:run.unl.pt:10362/168081Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:55:03.499133Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Using Neuroevolution to Design Neural Networks [special issue]
title Using Neuroevolution to Design Neural Networks [special issue]
spellingShingle Using Neuroevolution to Design Neural Networks [special issue]
Castelli, Mauro
title_short Using Neuroevolution to Design Neural Networks [special issue]
title_full Using Neuroevolution to Design Neural Networks [special issue]
title_fullStr Using Neuroevolution to Design Neural Networks [special issue]
title_full_unstemmed Using Neuroevolution to Design Neural Networks [special issue]
title_sort Using Neuroevolution to Design Neural Networks [special issue]
author Castelli, Mauro
author_facet Castelli, Mauro
Medvet, Eric
Trujillo, Leonardo
Manzoni, Luca
author_role author
author2 Medvet, Eric
Trujillo, Leonardo
Manzoni, Luca
author2_role author
author
author
dc.contributor.none.fl_str_mv Information Management Research Center (MagIC) - NOVA Information Management School
NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Castelli, Mauro
Medvet, Eric
Trujillo, Leonardo
Manzoni, Luca
description Castelli, M. (Guest ed.), Medvet, E. (Guest ed.), Trujillo, L., & Manzoni, L. (Guest ed.) (2020). Using Neuroevolution to Design Neural Networks. Computational Intelligence And Neuroscience, 2020.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-01
2020-05-01T00:00:00Z
2024-06-01T00:34:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/168081
url http://hdl.handle.net/10362/168081
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1687-5265
PURE: 92479704
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 27
application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597057508573184