The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z
| Main Author: | |
|---|---|
| Publication Date: | 2016 |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/16660 |
Summary: | The Golomb-Welch conjecture states that there is no perfect r-error correcting Lee code of word length n over Z for n ³ 3 and r ³ 2. This problem has received great attention due to its importance in applications in several areas beyond mathematics and computer sciences. Many results on this subject have been achieved, however the conjecture has resisted, although its validity has been proved for some particular values of n and r, namely: 3 £ n £ 5 and r ³ 2; n = 6 and r = 2. Here we give a contribution for the proof of the Golomb-Welch conjecture which reinforces it, proving the non-existence of perfect 2-error correcting Lee codes of word length 7 over Z. |
| id |
RCAP_34e801eff70ff27b5bf3f60a31e7cc65 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/16660 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over ZMatemáticaCódigos de correcção de errosConjectura de Golomb-WelchThe Golomb-Welch conjecture states that there is no perfect r-error correcting Lee code of word length n over Z for n ³ 3 and r ³ 2. This problem has received great attention due to its importance in applications in several areas beyond mathematics and computer sciences. Many results on this subject have been achieved, however the conjecture has resisted, although its validity has been proved for some particular values of n and r, namely: 3 £ n £ 5 and r ³ 2; n = 6 and r = 2. Here we give a contribution for the proof of the Golomb-Welch conjecture which reinforces it, proving the non-existence of perfect 2-error correcting Lee codes of word length 7 over Z.A conjetura de Golomb-Welch estabelece que não existem códigos de Lee perfeitos, corretores de r-erros, de palavras de comprimento n sobre Z para n ³ 3 e r ³ 2. Este problema tem recebido particular atenção devido à sua importância em aplicações em várias áreas que não apenas a da matemática e das ciências da computação. Apesar de terem sido obtidos muitos resultados no sentido de provar a conjetura, esta tem resistido estando estabelecida apenas para alguns valores particulares de n e r, nomeadamente: 3 £ n £ 5 e r ³ 2; n = 6 e r = 2. Nesta tese é dada uma contribuição que reforça a conjetura, sendo provada a não existência de códigos de Lee perfeitos, corretores de 2-erros, de palavras de comprimento 7 sobre Z.Universidade de Aveiro2018-07-20T14:00:58Z2016-05-10T00:00:00Z2016-05-102017-05-10T14:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/16660TID:101418280engCruz, Catarina Maria Neto dainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:59:17Zoai:ria.ua.pt:10773/16660Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:53:34.421334Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z |
| title |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z |
| spellingShingle |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z Cruz, Catarina Maria Neto da Matemática Códigos de correcção de erros Conjectura de Golomb-Welch |
| title_short |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z |
| title_full |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z |
| title_fullStr |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z |
| title_full_unstemmed |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z |
| title_sort |
The non-existence of perfect 2-error correcting Lee codes of word length 7 over Z |
| author |
Cruz, Catarina Maria Neto da |
| author_facet |
Cruz, Catarina Maria Neto da |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Cruz, Catarina Maria Neto da |
| dc.subject.por.fl_str_mv |
Matemática Códigos de correcção de erros Conjectura de Golomb-Welch |
| topic |
Matemática Códigos de correcção de erros Conjectura de Golomb-Welch |
| description |
The Golomb-Welch conjecture states that there is no perfect r-error correcting Lee code of word length n over Z for n ³ 3 and r ³ 2. This problem has received great attention due to its importance in applications in several areas beyond mathematics and computer sciences. Many results on this subject have been achieved, however the conjecture has resisted, although its validity has been proved for some particular values of n and r, namely: 3 £ n £ 5 and r ³ 2; n = 6 and r = 2. Here we give a contribution for the proof of the Golomb-Welch conjecture which reinforces it, proving the non-existence of perfect 2-error correcting Lee codes of word length 7 over Z. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-05-10T00:00:00Z 2016-05-10 2017-05-10T14:00:00Z 2018-07-20T14:00:58Z |
| dc.type.driver.fl_str_mv |
doctoral thesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16660 TID:101418280 |
| url |
http://hdl.handle.net/10773/16660 |
| identifier_str_mv |
TID:101418280 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
| publisher.none.fl_str_mv |
Universidade de Aveiro |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594168972148736 |