Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro

Bibliographic Details
Main Author: Best, Mark G.
Publication Date: 2020
Other Authors: Cunha-Reis, Cassilda, Ganin, Alexey Y., Sousa, Aureliana, Johnston, Jenna, Oliveira, Ana L., Smith, David G. E., Yiu, Humphrey H. P., Cooper, Ian R.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.14/31812
Summary: Antimicrobial resistance (AMR) has become a global concern as many bacterial species have developed resistance to commonly prescribed antibiotics, making them ineffective to treatments. One type of antibiotics, gallium(III) compounds, stands out as possible candidates due to their unique “Trojan horse” mechanism to tackle bacterial growth, by substituting iron(III) in the metabolic cycles of bacteria. In this study, we tested three polysaccharides (carboxymethyl cellulose (CMC), alginate, and pectin) as the binding and delivery agent for gallium on three bacteria (Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) with a potential bioresponsive delivery mode. Two types of analysis on bacterial growth (minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC)) were carried out while iron(III)-loaded polysaccharide samples were also tested for comparison. The results suggested that gallium showed an improved inhibitory activity on bacterial growth, in particular gallium(III)-loaded carboxymethyl cellulose (Ga-CMC) sample showing an inhibiting effect on growth for all three tested bacteria. At the MIC for all three bacteria, Ga-CMC showed no cytotoxicity effect on human dermal neonatal fibroblasts (HDNF). Therefore, these bioresponsive gallium(III) polysaccharide compounds show significant potential to be developed as the next-generation antibacterial agents with controlled release capability.
id RCAP_34e48986d40a6fa830d21d7a84a51424
oai_identifier_str oai:repositorio.ucp.pt:10400.14/31812
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitroGalliumCarbohydratesAntibacterialAntibioticsAnaerobicAntimicrobial resistance (AMR) has become a global concern as many bacterial species have developed resistance to commonly prescribed antibiotics, making them ineffective to treatments. One type of antibiotics, gallium(III) compounds, stands out as possible candidates due to their unique “Trojan horse” mechanism to tackle bacterial growth, by substituting iron(III) in the metabolic cycles of bacteria. In this study, we tested three polysaccharides (carboxymethyl cellulose (CMC), alginate, and pectin) as the binding and delivery agent for gallium on three bacteria (Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) with a potential bioresponsive delivery mode. Two types of analysis on bacterial growth (minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC)) were carried out while iron(III)-loaded polysaccharide samples were also tested for comparison. The results suggested that gallium showed an improved inhibitory activity on bacterial growth, in particular gallium(III)-loaded carboxymethyl cellulose (Ga-CMC) sample showing an inhibiting effect on growth for all three tested bacteria. At the MIC for all three bacteria, Ga-CMC showed no cytotoxicity effect on human dermal neonatal fibroblasts (HDNF). Therefore, these bioresponsive gallium(III) polysaccharide compounds show significant potential to be developed as the next-generation antibacterial agents with controlled release capability.American Chemical SocietyVeritatiBest, Mark G.Cunha-Reis, CassildaGanin, Alexey Y.Sousa, AurelianaJohnston, JennaOliveira, Ana L.Smith, David G. E.Yiu, Humphrey H. P.Cooper, Ian R.2021-01-28T16:28:07Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.14/31812eng2576-642210.1021/acsabm.0c00811info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T14:07:44Zoai:repositorio.ucp.pt:10400.14/31812Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T02:02:31.997387Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
title Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
spellingShingle Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
Best, Mark G.
Gallium
Carbohydrates
Antibacterial
Antibiotics
Anaerobic
title_short Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
title_full Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
title_fullStr Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
title_full_unstemmed Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
title_sort Antimicrobial properties of gallium (III)-and iron (III)-loaded polysaccharides affecting the growth of escherichia coli, staphylococcus aureus, and pseudomonas aeruginosa, in vitro
author Best, Mark G.
author_facet Best, Mark G.
Cunha-Reis, Cassilda
Ganin, Alexey Y.
Sousa, Aureliana
Johnston, Jenna
Oliveira, Ana L.
Smith, David G. E.
Yiu, Humphrey H. P.
Cooper, Ian R.
author_role author
author2 Cunha-Reis, Cassilda
Ganin, Alexey Y.
Sousa, Aureliana
Johnston, Jenna
Oliveira, Ana L.
Smith, David G. E.
Yiu, Humphrey H. P.
Cooper, Ian R.
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Veritati
dc.contributor.author.fl_str_mv Best, Mark G.
Cunha-Reis, Cassilda
Ganin, Alexey Y.
Sousa, Aureliana
Johnston, Jenna
Oliveira, Ana L.
Smith, David G. E.
Yiu, Humphrey H. P.
Cooper, Ian R.
dc.subject.por.fl_str_mv Gallium
Carbohydrates
Antibacterial
Antibiotics
Anaerobic
topic Gallium
Carbohydrates
Antibacterial
Antibiotics
Anaerobic
description Antimicrobial resistance (AMR) has become a global concern as many bacterial species have developed resistance to commonly prescribed antibiotics, making them ineffective to treatments. One type of antibiotics, gallium(III) compounds, stands out as possible candidates due to their unique “Trojan horse” mechanism to tackle bacterial growth, by substituting iron(III) in the metabolic cycles of bacteria. In this study, we tested three polysaccharides (carboxymethyl cellulose (CMC), alginate, and pectin) as the binding and delivery agent for gallium on three bacteria (Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) with a potential bioresponsive delivery mode. Two types of analysis on bacterial growth (minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC)) were carried out while iron(III)-loaded polysaccharide samples were also tested for comparison. The results suggested that gallium showed an improved inhibitory activity on bacterial growth, in particular gallium(III)-loaded carboxymethyl cellulose (Ga-CMC) sample showing an inhibiting effect on growth for all three tested bacteria. At the MIC for all three bacteria, Ga-CMC showed no cytotoxicity effect on human dermal neonatal fibroblasts (HDNF). Therefore, these bioresponsive gallium(III) polysaccharide compounds show significant potential to be developed as the next-generation antibacterial agents with controlled release capability.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
2021-01-28T16:28:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/31812
url http://hdl.handle.net/10400.14/31812
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2576-6422
10.1021/acsabm.0c00811
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601207426351104