Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs

Bibliographic Details
Main Author: Cardoso, João CR
Publication Date: 2014
Other Authors: Félix, Rute C., Power, Deborah
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/5417
Summary: Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.
id RCAP_33c637b805e6eec1ab3dbd37d0fd206e
oai_identifier_str oai:sapientia.ualg.pt:10400.1/5417
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRsArthropodaCaenorhabditis elegansChromosomesEvolutionary geneticsNematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.Public Library of ScienceSapientiaCardoso, João CRFélix, Rute C.Power, Deborah2014-10-23T09:15:26Z2014-032014-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/5417engAUT: DPO00386;http://dx.doi.org/ 10.1371/journal.pone.0092220info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:18:37Zoai:sapientia.ualg.pt:10400.1/5417Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:17:17.812237Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
title Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
spellingShingle Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
Cardoso, João CR
Arthropoda
Caenorhabditis elegans
Chromosomes
Evolutionary genetics
title_short Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
title_full Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
title_fullStr Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
title_full_unstemmed Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
title_sort Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
author Cardoso, João CR
author_facet Cardoso, João CR
Félix, Rute C.
Power, Deborah
author_role author
author2 Félix, Rute C.
Power, Deborah
author2_role author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Cardoso, João CR
Félix, Rute C.
Power, Deborah
dc.subject.por.fl_str_mv Arthropoda
Caenorhabditis elegans
Chromosomes
Evolutionary genetics
topic Arthropoda
Caenorhabditis elegans
Chromosomes
Evolutionary genetics
description Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-23T09:15:26Z
2014-03
2014-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/5417
url http://hdl.handle.net/10400.1/5417
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv AUT: DPO00386;
http://dx.doi.org/ 10.1371/journal.pone.0092220
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598587750055936