Probabilistic Egomotion for Stereo Visual Odometry
Main Author: | |
---|---|
Publication Date: | 2015 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/7270 |
Summary: | We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved. |
id |
RCAP_31650fa81aabea72b41fc5e1ab80ef5b |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/7270 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Probabilistic Egomotion for Stereo Visual OdometryStereo visionVisual OdometryEgomotionVisual NavigationWe present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.SpringerREPOSITÓRIO P.PORTOSilva, HugoBernardino, A.Silva, Eduardo2015-12-28T15:49:38Z20152015-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/7270eng1573-040910.1007/s10846-014-0054-5info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:17:29Zoai:recipp.ipp.pt:10400.22/7270Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:46:39.446655Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Probabilistic Egomotion for Stereo Visual Odometry |
title |
Probabilistic Egomotion for Stereo Visual Odometry |
spellingShingle |
Probabilistic Egomotion for Stereo Visual Odometry Silva, Hugo Stereo vision Visual Odometry Egomotion Visual Navigation |
title_short |
Probabilistic Egomotion for Stereo Visual Odometry |
title_full |
Probabilistic Egomotion for Stereo Visual Odometry |
title_fullStr |
Probabilistic Egomotion for Stereo Visual Odometry |
title_full_unstemmed |
Probabilistic Egomotion for Stereo Visual Odometry |
title_sort |
Probabilistic Egomotion for Stereo Visual Odometry |
author |
Silva, Hugo |
author_facet |
Silva, Hugo Bernardino, A. Silva, Eduardo |
author_role |
author |
author2 |
Bernardino, A. Silva, Eduardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Silva, Hugo Bernardino, A. Silva, Eduardo |
dc.subject.por.fl_str_mv |
Stereo vision Visual Odometry Egomotion Visual Navigation |
topic |
Stereo vision Visual Odometry Egomotion Visual Navigation |
description |
We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle’s angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method’s instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-28T15:49:38Z 2015 2015-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/7270 |
url |
http://hdl.handle.net/10400.22/7270 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1573-0409 10.1007/s10846-014-0054-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600692248379392 |