Forecasting mortality rates with Recurrent Neural Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10362/138330 |
Resumo: | Bravo, J. M. (2021). Forecasting mortality rates with Recurrent Neural Networks: A preliminary investigation using Portuguese data. In CAPSI 2021 Proceedings: 21ª Conferência da Associação Portuguesa de Sistemas de Informação, "Sociedade 5.0: Os desafios e as Oportunidades para os Sistemas de Informação".". [21th Portuguese Association of Information Systems Conference] (pp. 1-19). Associação Portuguesa de Sistemas de Informação. https://aisel.aisnet.org/capsi2021/7 |
id |
RCAP_309fbdd9abaa65d380e5f4fa2b7cbb22 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/138330 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Forecasting mortality rates with Recurrent Neural NetworksA preliminary investigation using Portuguese dataMortality forecastingRNNLSTMDeep learningPensionsInsuranceInformation Systems and ManagementManagement Information SystemsManagement of Technology and InnovationInformation SystemsComputer Science ApplicationsBravo, J. M. (2021). Forecasting mortality rates with Recurrent Neural Networks: A preliminary investigation using Portuguese data. In CAPSI 2021 Proceedings: 21ª Conferência da Associação Portuguesa de Sistemas de Informação, "Sociedade 5.0: Os desafios e as Oportunidades para os Sistemas de Informação".". [21th Portuguese Association of Information Systems Conference] (pp. 1-19). Associação Portuguesa de Sistemas de Informação. https://aisel.aisnet.org/capsi2021/7Forecasts of age-specific mortality rates are a critical input in multiple research and policy areas such as assessing the overall health, well-being, and human development of a population and the pricing and risk management of life insurance contracts and longevity-linked securities. Model selection and model combination are currently the two competing approaches when modelling and forecasting mortality, often using statistical learning methods. This paper empirically investigates the predictive performance of Recurrent Neural Networks (RNN) with Long Short-Term Memory (LSTM) architecture in jointly modelling and multivariate time series forecasting of age-specific mortality rates across the entire lifespan. We empirically investigate different hyperparameter choices in three hidden layers LSTM models and compare the model’s forecasting accuracy with that produced by classical age-period and age-period-cohort stochastic mortality models. The empirical results obtained using data for Portugal suggest that the RNN with LSTM architecture can outperform traditional benchmarking methods. The LSTM architecture generates smooth and consistent forecasts of mortality rates at all ages and across years. The predictive accuracy of the LSTM network is higher for both sexes, significantly outperforming the benchmarks in the male population, an interesting result given the added difficulties posed by the mortality hump and higher variability in male survival functions. Further investigation considering other RNN architectures, calibration procedures, and sample datasets is necessary to confirm the robustness of deep learning methods in modelling human survival.APSI - Associação Portuguesa de Sistemas de InformaçãoInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNBravo, Jorge Miguel2022-05-20T22:16:11Z2021-10-312021-10-31T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion20application/pdfhttp://hdl.handle.net/10362/138330engPURE: 32546645info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:01:41Zoai:run.unl.pt:10362/138330Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:32:49.926583Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Forecasting mortality rates with Recurrent Neural Networks A preliminary investigation using Portuguese data |
title |
Forecasting mortality rates with Recurrent Neural Networks |
spellingShingle |
Forecasting mortality rates with Recurrent Neural Networks Bravo, Jorge Miguel Mortality forecasting RNN LSTM Deep learning Pensions Insurance Information Systems and Management Management Information Systems Management of Technology and Innovation Information Systems Computer Science Applications |
title_short |
Forecasting mortality rates with Recurrent Neural Networks |
title_full |
Forecasting mortality rates with Recurrent Neural Networks |
title_fullStr |
Forecasting mortality rates with Recurrent Neural Networks |
title_full_unstemmed |
Forecasting mortality rates with Recurrent Neural Networks |
title_sort |
Forecasting mortality rates with Recurrent Neural Networks |
author |
Bravo, Jorge Miguel |
author_facet |
Bravo, Jorge Miguel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Bravo, Jorge Miguel |
dc.subject.por.fl_str_mv |
Mortality forecasting RNN LSTM Deep learning Pensions Insurance Information Systems and Management Management Information Systems Management of Technology and Innovation Information Systems Computer Science Applications |
topic |
Mortality forecasting RNN LSTM Deep learning Pensions Insurance Information Systems and Management Management Information Systems Management of Technology and Innovation Information Systems Computer Science Applications |
description |
Bravo, J. M. (2021). Forecasting mortality rates with Recurrent Neural Networks: A preliminary investigation using Portuguese data. In CAPSI 2021 Proceedings: 21ª Conferência da Associação Portuguesa de Sistemas de Informação, "Sociedade 5.0: Os desafios e as Oportunidades para os Sistemas de Informação".". [21th Portuguese Association of Information Systems Conference] (pp. 1-19). Associação Portuguesa de Sistemas de Informação. https://aisel.aisnet.org/capsi2021/7 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-31 2021-10-31T00:00:00Z 2022-05-20T22:16:11Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/138330 |
url |
http://hdl.handle.net/10362/138330 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 32546645 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
20 application/pdf |
dc.publisher.none.fl_str_mv |
APSI - Associação Portuguesa de Sistemas de Informação |
publisher.none.fl_str_mv |
APSI - Associação Portuguesa de Sistemas de Informação |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596773540560896 |