Machine learning bias in predicting high school grades
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/126475 |
Summary: | Costa-Mendes, R., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2021). Machine learning bias in predicting high school grades: A knowledge perspective. Emerging Science Journal, 5(5), 576-597. https://doi.org/10.28991/esj-2021-01298 |
id |
RCAP_2f9627b2d6edcf080cd277b82cc87019 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/126475 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Machine learning bias in predicting high school gradesA knowledge perspectiveKnowledge BiasVariance DecompositionRandom ForestSupport Vector RegressionPrecision EducationAcademic AchievementGeneralSDG 4 - Quality EducationCosta-Mendes, R., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2021). Machine learning bias in predicting high school grades: A knowledge perspective. Emerging Science Journal, 5(5), 576-597. https://doi.org/10.28991/esj-2021-01298This study focuses on the machine learning bias when predicting teacher grades. The experimental phase consists of predicting the student grades of 11th and 12thgrade Portuguese high school grades and computing the bias and variance decomposition. In the base implementation, only the academic achievement critical factors are considered. In the second implementation, the preceding year’s grade is appended as an input variable. The machine learning algorithms in use are random forest, support vector machine, and extreme boosting machine. The reasons behind the poor performance of the machine learning algorithms are either the input space poor preciseness or the lack of a sound record of student performance. We introduce the new concept of knowledge bias and a new predictive model classification. Precision education would reduce bias by providing low-bias intensive-knowledge models. To avoid bias, it is not necessary to add knowledge to the input space. Low-bias extensive-knowledge models are achievable simply by appending the student’s earlier performance record to the model. The low-bias intensive-knowledge learning models promoted by precision education are suited to designing new policies and actions toward academic attainments. If the aim is solely prediction, deciding for a low bias knowledge-extensive model can be appropriate and correct.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCosta-Mendes, RicardoCruz-Jesus, FredericoOliveira, TiagoCastelli, Mauro2021-10-22T03:42:57Z2021-10-012021-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article22application/pdfhttp://hdl.handle.net/10362/126475eng2610-9182PURE: 33907817https://doi.org/10.28991/esj-2021-01298info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:56:45Zoai:run.unl.pt:10362/126475Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:27:49.293980Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Machine learning bias in predicting high school grades A knowledge perspective |
title |
Machine learning bias in predicting high school grades |
spellingShingle |
Machine learning bias in predicting high school grades Costa-Mendes, Ricardo Knowledge Bias Variance Decomposition Random Forest Support Vector Regression Precision Education Academic Achievement General SDG 4 - Quality Education |
title_short |
Machine learning bias in predicting high school grades |
title_full |
Machine learning bias in predicting high school grades |
title_fullStr |
Machine learning bias in predicting high school grades |
title_full_unstemmed |
Machine learning bias in predicting high school grades |
title_sort |
Machine learning bias in predicting high school grades |
author |
Costa-Mendes, Ricardo |
author_facet |
Costa-Mendes, Ricardo Cruz-Jesus, Frederico Oliveira, Tiago Castelli, Mauro |
author_role |
author |
author2 |
Cruz-Jesus, Frederico Oliveira, Tiago Castelli, Mauro |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Costa-Mendes, Ricardo Cruz-Jesus, Frederico Oliveira, Tiago Castelli, Mauro |
dc.subject.por.fl_str_mv |
Knowledge Bias Variance Decomposition Random Forest Support Vector Regression Precision Education Academic Achievement General SDG 4 - Quality Education |
topic |
Knowledge Bias Variance Decomposition Random Forest Support Vector Regression Precision Education Academic Achievement General SDG 4 - Quality Education |
description |
Costa-Mendes, R., Cruz-Jesus, F., Oliveira, T., & Castelli, M. (2021). Machine learning bias in predicting high school grades: A knowledge perspective. Emerging Science Journal, 5(5), 576-597. https://doi.org/10.28991/esj-2021-01298 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-22T03:42:57Z 2021-10-01 2021-10-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/126475 |
url |
http://hdl.handle.net/10362/126475 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2610-9182 PURE: 33907817 https://doi.org/10.28991/esj-2021-01298 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
22 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596711945109504 |