Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case

Bibliographic Details
Main Author: Costa, Fernando Pestana da
Publication Date: 2017
Other Authors: Méndez, Maria Isabel, Pinto, João Teixeira
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.2/6240
Summary: In the paper, Bifurcation analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions (2009 Eur. J. Appl. Math. 20, 269–287) by da Costa et al. the twist-Fréedericksz transition in a nematic liquid-crystal one-dimensional cell of lenght L was studied, imposing an antisymmetric net twist Dirichlet condition at the cell boundaries. In the present paper, we extend that study to the more general case of net twist Dirichlet conditions without any kind of symmetry restrictions. We use phase-plane analysis tools and appropriately defined time maps to obtain the bifurcation diagrams of the model when L is the bifurcation parameter, and related these diagrams with the one in the antisymmetric situation. The stability of the bifurcating solutions is investigated by applying the method of Maginu (1978 J. Math. Anal. Appl. 63, 224–243).
id RCAP_2e3a243ed00389fb6bbec31c1f99553b
oai_identifier_str oai:repositorioaberto.uab.pt:10400.2/6240
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric casePendulum equationLiquid crystalsNon-homogeneous Dirichlet boundary value problemsBifurcation theoryTime mapsPhase plane analysisTwist-Fréedericksz transitionLiquid crystalsIn the paper, Bifurcation analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions (2009 Eur. J. Appl. Math. 20, 269–287) by da Costa et al. the twist-Fréedericksz transition in a nematic liquid-crystal one-dimensional cell of lenght L was studied, imposing an antisymmetric net twist Dirichlet condition at the cell boundaries. In the present paper, we extend that study to the more general case of net twist Dirichlet conditions without any kind of symmetry restrictions. We use phase-plane analysis tools and appropriately defined time maps to obtain the bifurcation diagrams of the model when L is the bifurcation parameter, and related these diagrams with the one in the antisymmetric situation. The stability of the bifurcating solutions is investigated by applying the method of Maginu (1978 J. Math. Anal. Appl. 63, 224–243).Cambridge University PressRepositório AbertoCosta, Fernando Pestana daMéndez, Maria IsabelPinto, João Teixeira2017-02-28T16:42:31Z2017-042017-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/6240eng0956-792510.1017/S0956792516000243info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T09:41:40Zoai:repositorioaberto.uab.pt:10400.2/6240Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:05:22.754815Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
title Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
spellingShingle Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
Costa, Fernando Pestana da
Pendulum equation
Liquid crystals
Non-homogeneous Dirichlet boundary value problems
Bifurcation theory
Time maps
Phase plane analysis
Twist-Fréedericksz transition
Liquid crystals
title_short Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
title_full Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
title_fullStr Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
title_full_unstemmed Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
title_sort Bifurcations analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions: the asymmetric case
author Costa, Fernando Pestana da
author_facet Costa, Fernando Pestana da
Méndez, Maria Isabel
Pinto, João Teixeira
author_role author
author2 Méndez, Maria Isabel
Pinto, João Teixeira
author2_role author
author
dc.contributor.none.fl_str_mv Repositório Aberto
dc.contributor.author.fl_str_mv Costa, Fernando Pestana da
Méndez, Maria Isabel
Pinto, João Teixeira
dc.subject.por.fl_str_mv Pendulum equation
Liquid crystals
Non-homogeneous Dirichlet boundary value problems
Bifurcation theory
Time maps
Phase plane analysis
Twist-Fréedericksz transition
Liquid crystals
topic Pendulum equation
Liquid crystals
Non-homogeneous Dirichlet boundary value problems
Bifurcation theory
Time maps
Phase plane analysis
Twist-Fréedericksz transition
Liquid crystals
description In the paper, Bifurcation analysis of the twist-Fréedericksz transition in a nematic liquid-crystal cell with pre-twist boundary conditions (2009 Eur. J. Appl. Math. 20, 269–287) by da Costa et al. the twist-Fréedericksz transition in a nematic liquid-crystal one-dimensional cell of lenght L was studied, imposing an antisymmetric net twist Dirichlet condition at the cell boundaries. In the present paper, we extend that study to the more general case of net twist Dirichlet conditions without any kind of symmetry restrictions. We use phase-plane analysis tools and appropriately defined time maps to obtain the bifurcation diagrams of the model when L is the bifurcation parameter, and related these diagrams with the one in the antisymmetric situation. The stability of the bifurcating solutions is investigated by applying the method of Maginu (1978 J. Math. Anal. Appl. 63, 224–243).
publishDate 2017
dc.date.none.fl_str_mv 2017-02-28T16:42:31Z
2017-04
2017-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.2/6240
url http://hdl.handle.net/10400.2/6240
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0956-7925
10.1017/S0956792516000243
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599072055853056