Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity

Detalhes bibliográficos
Autor(a) principal: Hobbiss, Anna Felicity
Data de Publicação: 2016
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/56199
Resumo: Neural networks employ homeostatic synaptic plasticity (HSP) to maintain activity within an optimal range, countering the tendencies of unchecked Hebbian LTP or LTD to saturate the network. It is manifested by synaptic scaling of all the inputs on a neuron, either upwards to increase global activity or downwards to decrease it. In this thesis we investigate the structural correlates that accompany the induction of homeostatic plasticity and then determine how this form of synaptic modulation impacts the ability of inputs to undergo Hebbian plasticity. We show that prolonged activity blockade in organotypic hippocampal slices causes structural growth of individual dendritic spines, complementing the physiological increase in synaptic strength(...)
id RCAP_2dc62e72201bb8b1ddae061edb3ba0fc
oai_identifier_str oai:run.unl.pt:10362/56199
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticityBiologyNeuroscienceBiologyNeural networks employ homeostatic synaptic plasticity (HSP) to maintain activity within an optimal range, countering the tendencies of unchecked Hebbian LTP or LTD to saturate the network. It is manifested by synaptic scaling of all the inputs on a neuron, either upwards to increase global activity or downwards to decrease it. In this thesis we investigate the structural correlates that accompany the induction of homeostatic plasticity and then determine how this form of synaptic modulation impacts the ability of inputs to undergo Hebbian plasticity. We show that prolonged activity blockade in organotypic hippocampal slices causes structural growth of individual dendritic spines, complementing the physiological increase in synaptic strength(...)Fundação ChampalimaudIsraely, InbalRUNHobbiss, Anna Felicity2019-01-02T16:59:25Z20162016-072016-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/56199enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:36:12Zoai:run.unl.pt:10362/56199Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:07:11.977735Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
title Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
spellingShingle Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
Hobbiss, Anna Felicity
Biology
Neuroscience
Biology
title_short Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
title_full Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
title_fullStr Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
title_full_unstemmed Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
title_sort Structural scaling and threshold modulation of dentritic spines driven by homeostatic plasticity
author Hobbiss, Anna Felicity
author_facet Hobbiss, Anna Felicity
author_role author
dc.contributor.none.fl_str_mv Israely, Inbal
RUN
dc.contributor.author.fl_str_mv Hobbiss, Anna Felicity
dc.subject.por.fl_str_mv Biology
Neuroscience
Biology
topic Biology
Neuroscience
Biology
description Neural networks employ homeostatic synaptic plasticity (HSP) to maintain activity within an optimal range, countering the tendencies of unchecked Hebbian LTP or LTD to saturate the network. It is manifested by synaptic scaling of all the inputs on a neuron, either upwards to increase global activity or downwards to decrease it. In this thesis we investigate the structural correlates that accompany the induction of homeostatic plasticity and then determine how this form of synaptic modulation impacts the ability of inputs to undergo Hebbian plasticity. We show that prolonged activity blockade in organotypic hippocampal slices causes structural growth of individual dendritic spines, complementing the physiological increase in synaptic strength(...)
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-07
2016-01-01T00:00:00Z
2019-01-02T16:59:25Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/56199
url http://hdl.handle.net/10362/56199
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596448517652480