Propriedades de regularidade de operadores de Wiener-Hopf-Hankel

Bibliographic Details
Main Author: Nolasco, Ana Paula Branco
Publication Date: 2007
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/2925
Summary: Nesta tese estudamos as propriedades de regularidade de operadores de Wiener-Hopf-Hankel com símbolos de Fourier pertencentes às álgebras das funções quase periódicas, das funções semi-quase periódicas e das funções quase periódicas por troços e consideramos estes operadores a actuar entre espaços de Lebesgue Lp (para 1<p<∞). Por propriedades de regularidade entende-se invertibilidade lateral e bilateral, propriedade de Fredholm e solubilidade normal. Propomos uma teoria de factorização para operadores de Wiener-Hopf-Hankel com símbolos de Fourier quase periódicos, e a actuar entre espaços de Lebesgue L2, introduzindo uma factorização para os símbolos de Fourier quase periódicos de tal modo que as propriedades dos factores irão permitir correspondentes factorizações dos operadores. Um critério para a propriedade de semi-Fredholm e para a invertibilidade lateral e bilateral é assim obtido em termos de determinados índices das factorizações. Baseado na relação delta após extensão, estabelecemos um teorema do tipo de Sarason para operadores de Wiener-Hopf-Hankel com símbolos de Fourier semi-quase periódicos, a actuar entre espaços de Lebesgue L2. Uma generalização do teorema do tipo de Sarason é também obtida considerando agora os operadores a actuar entre espaços de Lebesgue Lp. Para operadores de Wiener-Hopf-Hankel com símbolos de Fourier quase periódicos por troços, a actuar entre espaços de Lebesgue L2, um critério para a propriedade de Fredholm e para a invertibilidade lateral é também obtido através do uso da relação delta após extensão. Todos estes resultados significam uma caracterização da propriedade de Fredholm e da invertibilidade lateral e bilateral destes operadores em termos dos valores médios e das médias geométricas dos representantes quase periódicos no infinito dos símbolos de Fourier, assim como das descontinuidades de determinadas funções auxiliares (no caso das funções quase periódicas por troços). Para cada caso, é apresentada uma fórmula para o índice de Fredholm. Finalmente, de volta aos operadores de Wiener-Hopf-Hankel com símbolos de Fourier na subálgebra das funções quase periódicas APW, a actuar entre espaços de Lebesgue L2, consideramos o caso mais geral de operadores de Wiener-Hopf-Hankel com símbolos matriciais de Fourier APW. Para estes operadores, obtemos um critério para a invertibilidade e a propriedade de semi-Fredholm baseado na hipótese de um específico conjunto de Hausdorff ser limitado fora de zero.
id RCAP_2db43cea31b05fa54ab0214d5dcf6ff0
oai_identifier_str oai:ria.ua.pt:10773/2925
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Propriedades de regularidade de operadores de Wiener-Hopf-HankelMatemáticaOperadores de Wiener-Hopf-HankelTeoria de FredholmFactorização de operadoresFunções periódicasNesta tese estudamos as propriedades de regularidade de operadores de Wiener-Hopf-Hankel com símbolos de Fourier pertencentes às álgebras das funções quase periódicas, das funções semi-quase periódicas e das funções quase periódicas por troços e consideramos estes operadores a actuar entre espaços de Lebesgue Lp (para 1<p<∞). Por propriedades de regularidade entende-se invertibilidade lateral e bilateral, propriedade de Fredholm e solubilidade normal. Propomos uma teoria de factorização para operadores de Wiener-Hopf-Hankel com símbolos de Fourier quase periódicos, e a actuar entre espaços de Lebesgue L2, introduzindo uma factorização para os símbolos de Fourier quase periódicos de tal modo que as propriedades dos factores irão permitir correspondentes factorizações dos operadores. Um critério para a propriedade de semi-Fredholm e para a invertibilidade lateral e bilateral é assim obtido em termos de determinados índices das factorizações. Baseado na relação delta após extensão, estabelecemos um teorema do tipo de Sarason para operadores de Wiener-Hopf-Hankel com símbolos de Fourier semi-quase periódicos, a actuar entre espaços de Lebesgue L2. Uma generalização do teorema do tipo de Sarason é também obtida considerando agora os operadores a actuar entre espaços de Lebesgue Lp. Para operadores de Wiener-Hopf-Hankel com símbolos de Fourier quase periódicos por troços, a actuar entre espaços de Lebesgue L2, um critério para a propriedade de Fredholm e para a invertibilidade lateral é também obtido através do uso da relação delta após extensão. Todos estes resultados significam uma caracterização da propriedade de Fredholm e da invertibilidade lateral e bilateral destes operadores em termos dos valores médios e das médias geométricas dos representantes quase periódicos no infinito dos símbolos de Fourier, assim como das descontinuidades de determinadas funções auxiliares (no caso das funções quase periódicas por troços). Para cada caso, é apresentada uma fórmula para o índice de Fredholm. Finalmente, de volta aos operadores de Wiener-Hopf-Hankel com símbolos de Fourier na subálgebra das funções quase periódicas APW, a actuar entre espaços de Lebesgue L2, consideramos o caso mais geral de operadores de Wiener-Hopf-Hankel com símbolos matriciais de Fourier APW. Para estes operadores, obtemos um critério para a invertibilidade e a propriedade de semi-Fredholm baseado na hipótese de um específico conjunto de Hausdorff ser limitado fora de zero.In this thesis we study the regularity properties of Wiener-Hopf-Hankel operators with Fourier symbols belonging to the algebras of almost periodic, semi-almost periodic and piecewise almost periodic functions and we consider these operators acting between Lp Lebesgue spaces (for 1<p<∞). By regularity properties one means one-sided and both-sided invertibility, Fredholm property and normal solvability. We propose a factorization theory for Wiener-Hopf-Hankel operators with almost periodic Fourier symbols, and acting between L2 Lebesgue spaces, by introducing a factorization concept for the almost periodic Fourier symbols such that the properties of the factors will allow corresponding operator factorizations. A criterion for the semi-Fredholm property and for one-sided and both-sided invertibility is therefore obtained upon certain indices of the factorizations. Based on the delta relation after extension, we establish a Sarason's type theorem for Wiener-Hopf-Hankel operators with semi-almost periodic Fourier symbols and acting between L2 Lebesgue spaces. We also derive a generalization of the Sarason's type theorem, the so-called Duduchava-Saginashvili's type theorem, when we consider the same kind of operators acting now between Lp Lebesgue spaces. For Wiener-Hopf-Hankel operators with piecewise almost periodic Fourier symbols, acting between L2 Lebesgue spaces, a criterion for the Fredholm property and for the one-sided invertibility is also obtained upon the use of the delta relation after extension. All these results mean a characterization of the Fredholm property, and one-sided invertibility of these operators, based on the mean motions and geometric mean values of the almost periodic representatives of the Fourier symbols at minus and plus infinity, as well as on the discontinuities of certain auxiliary functions (in the case of piecewise almost periodic functions). For each case, formulae for the Fredholm index of the operators are provided. Finally, we return to Wiener-Hopf-Hankel operators with Fourier symbols in the subalgebra of almost periodic functions APW, acting between L2 Lebesgue spaces, and we consider the more general case of Wiener-Hopf-Hankel operators with matrix APW Fourier symbols. For these operators we achieve an invertibility and semi-Fredholm criterion based on the assumption that a particular Hausdorff set is bounded away from zero.Universidade de Aveiro2011-04-19T14:30:09Z2007-01-01T00:00:00Z2007doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/2925TID:101154623engNolasco, Ana Paula Brancoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:30:52Zoai:ria.ua.pt:10773/2925Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:37:16.478687Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
title Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
spellingShingle Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
Nolasco, Ana Paula Branco
Matemática
Operadores de Wiener-Hopf-Hankel
Teoria de Fredholm
Factorização de operadores
Funções periódicas
title_short Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
title_full Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
title_fullStr Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
title_full_unstemmed Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
title_sort Propriedades de regularidade de operadores de Wiener-Hopf-Hankel
author Nolasco, Ana Paula Branco
author_facet Nolasco, Ana Paula Branco
author_role author
dc.contributor.author.fl_str_mv Nolasco, Ana Paula Branco
dc.subject.por.fl_str_mv Matemática
Operadores de Wiener-Hopf-Hankel
Teoria de Fredholm
Factorização de operadores
Funções periódicas
topic Matemática
Operadores de Wiener-Hopf-Hankel
Teoria de Fredholm
Factorização de operadores
Funções periódicas
description Nesta tese estudamos as propriedades de regularidade de operadores de Wiener-Hopf-Hankel com símbolos de Fourier pertencentes às álgebras das funções quase periódicas, das funções semi-quase periódicas e das funções quase periódicas por troços e consideramos estes operadores a actuar entre espaços de Lebesgue Lp (para 1<p<∞). Por propriedades de regularidade entende-se invertibilidade lateral e bilateral, propriedade de Fredholm e solubilidade normal. Propomos uma teoria de factorização para operadores de Wiener-Hopf-Hankel com símbolos de Fourier quase periódicos, e a actuar entre espaços de Lebesgue L2, introduzindo uma factorização para os símbolos de Fourier quase periódicos de tal modo que as propriedades dos factores irão permitir correspondentes factorizações dos operadores. Um critério para a propriedade de semi-Fredholm e para a invertibilidade lateral e bilateral é assim obtido em termos de determinados índices das factorizações. Baseado na relação delta após extensão, estabelecemos um teorema do tipo de Sarason para operadores de Wiener-Hopf-Hankel com símbolos de Fourier semi-quase periódicos, a actuar entre espaços de Lebesgue L2. Uma generalização do teorema do tipo de Sarason é também obtida considerando agora os operadores a actuar entre espaços de Lebesgue Lp. Para operadores de Wiener-Hopf-Hankel com símbolos de Fourier quase periódicos por troços, a actuar entre espaços de Lebesgue L2, um critério para a propriedade de Fredholm e para a invertibilidade lateral é também obtido através do uso da relação delta após extensão. Todos estes resultados significam uma caracterização da propriedade de Fredholm e da invertibilidade lateral e bilateral destes operadores em termos dos valores médios e das médias geométricas dos representantes quase periódicos no infinito dos símbolos de Fourier, assim como das descontinuidades de determinadas funções auxiliares (no caso das funções quase periódicas por troços). Para cada caso, é apresentada uma fórmula para o índice de Fredholm. Finalmente, de volta aos operadores de Wiener-Hopf-Hankel com símbolos de Fourier na subálgebra das funções quase periódicas APW, a actuar entre espaços de Lebesgue L2, consideramos o caso mais geral de operadores de Wiener-Hopf-Hankel com símbolos matriciais de Fourier APW. Para estes operadores, obtemos um critério para a invertibilidade e a propriedade de semi-Fredholm baseado na hipótese de um específico conjunto de Hausdorff ser limitado fora de zero.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01T00:00:00Z
2007
2011-04-19T14:30:09Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/2925
TID:101154623
url http://hdl.handle.net/10773/2925
identifier_str_mv TID:101154623
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833593932769918976