Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , , , |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/25502 |
Summary: | Um dos maiores desafios da engenharia de tecidos de cartilagem é a dificuldade de imitar o ambiente bioquímico e biomecânico da cartilagem nativa. Até à data, várias estratégias de engenharia de tecidos de cartilagem conseguiram desenvolver cartilagem artificial com propriedades bioquímicas semelhantes às do tecido nativo [1]. No entanto as propriedades mecânicas da cartilagem in-vitro permanecem inferiores às da nativa. Uma das principais limitações da cartilagem artificial é que esta não exibe as variações zonais da cartilagem nativa [2-3]. A organização das fibras de colagénio em forma de arcada ao longo da profundidade da cartilagem nativa é importante e deve ser replicada na cartilagem artificial para tornar se mecanicamente funcional [2-3]. As condições de cultura que têm impacto sobre a síntese de colagénio e sua organização fibrilar incluem os scaffolds e a estimulação mecânica. Alguns investigadores sugerem o uso de scaffolds fibrosos anisotrópicos, a fim de proporcionar um arquétipo para organizar a nova matriz extracelular depositada. A utilização da técnica de eletrofiação para o desenvolvimento de scaffolds fibrosos para a engenharia de tecidos da cartilagem já foi reportada, visto que as matrizes de nanofibras poliméricas alinhadas produzidas mimetizam a topografia da matriz extracelular da cartilagem nativa e funcionam como suporte para organizar a deposição de nova matriz extracelular produzida por células nelas semeadas [4]. Alguns investigadores sugerem que a aplicação de estímulos mecânicos variáveis em profundidade que estimulem de forma diferenciada a síntese de matriz extracelular e logo uma diferente orientação fibrilar em profundidade [5]. A policaprolactona (PCL) é um poliéster sintético, biocompatível e biodegradável que apresenta elevada resistência mecânica e é facilmente processável. As matrizes de nanofibras de PCL mimetizam topograficamente a matriz extracelular no tecido cartilagíneo. No entanto, a hidrofobicidade inerente deste material pode prevenir a adesão, migração, proliferação e diferenciação celular. A combinação de PCL com polímeros naturais tem sido utilizada para obter propriedades mecânicas e biológicas complementares, uma vez que os polímeros naturais possuem uma superfície hidrofílica e recetores reconhecíveis pelas células. A gelatina é um polímero natural derivado do colagénio, que constitui maioritariamente a matriz extracelular da cartilagem [6]. Assim sendo, neste trabalho foi explorada a combinação de estimulação mecânica com a utilização de scaffolds fibrosos anisotrópicos de PCL e gelatina produzidos por electrofiação, envolvidos numa estrutura porosa de óxido de grafeno (GO) e colagénio, para estimular a proliferação celular e produção de matriz extracelular cartilagínea. Várias arquiteturas foram desenvolvidas. As propriedades topográficas, mecânicas e a capacidade de absorção de água dos scaffolds foram analisadas e, posteriormente a biocompatibilidade dos mesmos foi investigada utilizando células progenitoras da cartilagem articular. A estimulação mecânica das células semeadas nos scaffolds por compressão cíclica foi efetuada com recurso um biorreator desenvolvido e patenteado pela equipa [7]. Os resultados obtidos demonstraram que estas estruturas permitem não só a adesão, mas também a proliferação celular. A estimulação mecânica aplicada gerou uma resposta positiva das células, através da produção de elementos da matriz extracelular da cartilagem. |
id |
RCAP_2bf9fcf2a41ae7c75f83014a7db6575a |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/25502 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagemEngenharia de tecidos da cartilagemScaffolds electrofiadosAnisotropiaPCLGelatinaBiocompatibilidadeUm dos maiores desafios da engenharia de tecidos de cartilagem é a dificuldade de imitar o ambiente bioquímico e biomecânico da cartilagem nativa. Até à data, várias estratégias de engenharia de tecidos de cartilagem conseguiram desenvolver cartilagem artificial com propriedades bioquímicas semelhantes às do tecido nativo [1]. No entanto as propriedades mecânicas da cartilagem in-vitro permanecem inferiores às da nativa. Uma das principais limitações da cartilagem artificial é que esta não exibe as variações zonais da cartilagem nativa [2-3]. A organização das fibras de colagénio em forma de arcada ao longo da profundidade da cartilagem nativa é importante e deve ser replicada na cartilagem artificial para tornar se mecanicamente funcional [2-3]. As condições de cultura que têm impacto sobre a síntese de colagénio e sua organização fibrilar incluem os scaffolds e a estimulação mecânica. Alguns investigadores sugerem o uso de scaffolds fibrosos anisotrópicos, a fim de proporcionar um arquétipo para organizar a nova matriz extracelular depositada. A utilização da técnica de eletrofiação para o desenvolvimento de scaffolds fibrosos para a engenharia de tecidos da cartilagem já foi reportada, visto que as matrizes de nanofibras poliméricas alinhadas produzidas mimetizam a topografia da matriz extracelular da cartilagem nativa e funcionam como suporte para organizar a deposição de nova matriz extracelular produzida por células nelas semeadas [4]. Alguns investigadores sugerem que a aplicação de estímulos mecânicos variáveis em profundidade que estimulem de forma diferenciada a síntese de matriz extracelular e logo uma diferente orientação fibrilar em profundidade [5]. A policaprolactona (PCL) é um poliéster sintético, biocompatível e biodegradável que apresenta elevada resistência mecânica e é facilmente processável. As matrizes de nanofibras de PCL mimetizam topograficamente a matriz extracelular no tecido cartilagíneo. No entanto, a hidrofobicidade inerente deste material pode prevenir a adesão, migração, proliferação e diferenciação celular. A combinação de PCL com polímeros naturais tem sido utilizada para obter propriedades mecânicas e biológicas complementares, uma vez que os polímeros naturais possuem uma superfície hidrofílica e recetores reconhecíveis pelas células. A gelatina é um polímero natural derivado do colagénio, que constitui maioritariamente a matriz extracelular da cartilagem [6]. Assim sendo, neste trabalho foi explorada a combinação de estimulação mecânica com a utilização de scaffolds fibrosos anisotrópicos de PCL e gelatina produzidos por electrofiação, envolvidos numa estrutura porosa de óxido de grafeno (GO) e colagénio, para estimular a proliferação celular e produção de matriz extracelular cartilagínea. Várias arquiteturas foram desenvolvidas. As propriedades topográficas, mecânicas e a capacidade de absorção de água dos scaffolds foram analisadas e, posteriormente a biocompatibilidade dos mesmos foi investigada utilizando células progenitoras da cartilagem articular. A estimulação mecânica das células semeadas nos scaffolds por compressão cíclica foi efetuada com recurso um biorreator desenvolvido e patenteado pela equipa [7]. Os resultados obtidos demonstraram que estas estruturas permitem não só a adesão, mas também a proliferação celular. A estimulação mecânica aplicada gerou uma resposta positiva das células, através da produção de elementos da matriz extracelular da cartilagem.UA Editora2019-03-07T11:22:58Z2018-06-11T00:00:00Z2018-06-11conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/25502por978-972-789-541-0Semitela, ÂngelaGirão, André F.Fernandes, CarlaMarques, Paula A.A.P.Completo, Antónioinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:19:25Zoai:ria.ua.pt:10773/25502Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:04:26.844600Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem |
title |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem |
spellingShingle |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem Semitela, Ângela Engenharia de tecidos da cartilagem Scaffolds electrofiados Anisotropia PCL Gelatina Biocompatibilidade |
title_short |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem |
title_full |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem |
title_fullStr |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem |
title_full_unstemmed |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem |
title_sort |
Desenvolvimento de scaffolds anisotrópicos de PCL e gelatina para a regeneração de cartilagem |
author |
Semitela, Ângela |
author_facet |
Semitela, Ângela Girão, André F. Fernandes, Carla Marques, Paula A.A.P. Completo, António |
author_role |
author |
author2 |
Girão, André F. Fernandes, Carla Marques, Paula A.A.P. Completo, António |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Semitela, Ângela Girão, André F. Fernandes, Carla Marques, Paula A.A.P. Completo, António |
dc.subject.por.fl_str_mv |
Engenharia de tecidos da cartilagem Scaffolds electrofiados Anisotropia PCL Gelatina Biocompatibilidade |
topic |
Engenharia de tecidos da cartilagem Scaffolds electrofiados Anisotropia PCL Gelatina Biocompatibilidade |
description |
Um dos maiores desafios da engenharia de tecidos de cartilagem é a dificuldade de imitar o ambiente bioquímico e biomecânico da cartilagem nativa. Até à data, várias estratégias de engenharia de tecidos de cartilagem conseguiram desenvolver cartilagem artificial com propriedades bioquímicas semelhantes às do tecido nativo [1]. No entanto as propriedades mecânicas da cartilagem in-vitro permanecem inferiores às da nativa. Uma das principais limitações da cartilagem artificial é que esta não exibe as variações zonais da cartilagem nativa [2-3]. A organização das fibras de colagénio em forma de arcada ao longo da profundidade da cartilagem nativa é importante e deve ser replicada na cartilagem artificial para tornar se mecanicamente funcional [2-3]. As condições de cultura que têm impacto sobre a síntese de colagénio e sua organização fibrilar incluem os scaffolds e a estimulação mecânica. Alguns investigadores sugerem o uso de scaffolds fibrosos anisotrópicos, a fim de proporcionar um arquétipo para organizar a nova matriz extracelular depositada. A utilização da técnica de eletrofiação para o desenvolvimento de scaffolds fibrosos para a engenharia de tecidos da cartilagem já foi reportada, visto que as matrizes de nanofibras poliméricas alinhadas produzidas mimetizam a topografia da matriz extracelular da cartilagem nativa e funcionam como suporte para organizar a deposição de nova matriz extracelular produzida por células nelas semeadas [4]. Alguns investigadores sugerem que a aplicação de estímulos mecânicos variáveis em profundidade que estimulem de forma diferenciada a síntese de matriz extracelular e logo uma diferente orientação fibrilar em profundidade [5]. A policaprolactona (PCL) é um poliéster sintético, biocompatível e biodegradável que apresenta elevada resistência mecânica e é facilmente processável. As matrizes de nanofibras de PCL mimetizam topograficamente a matriz extracelular no tecido cartilagíneo. No entanto, a hidrofobicidade inerente deste material pode prevenir a adesão, migração, proliferação e diferenciação celular. A combinação de PCL com polímeros naturais tem sido utilizada para obter propriedades mecânicas e biológicas complementares, uma vez que os polímeros naturais possuem uma superfície hidrofílica e recetores reconhecíveis pelas células. A gelatina é um polímero natural derivado do colagénio, que constitui maioritariamente a matriz extracelular da cartilagem [6]. Assim sendo, neste trabalho foi explorada a combinação de estimulação mecânica com a utilização de scaffolds fibrosos anisotrópicos de PCL e gelatina produzidos por electrofiação, envolvidos numa estrutura porosa de óxido de grafeno (GO) e colagénio, para estimular a proliferação celular e produção de matriz extracelular cartilagínea. Várias arquiteturas foram desenvolvidas. As propriedades topográficas, mecânicas e a capacidade de absorção de água dos scaffolds foram analisadas e, posteriormente a biocompatibilidade dos mesmos foi investigada utilizando células progenitoras da cartilagem articular. A estimulação mecânica das células semeadas nos scaffolds por compressão cíclica foi efetuada com recurso um biorreator desenvolvido e patenteado pela equipa [7]. Os resultados obtidos demonstraram que estas estruturas permitem não só a adesão, mas também a proliferação celular. A estimulação mecânica aplicada gerou uma resposta positiva das células, através da produção de elementos da matriz extracelular da cartilagem. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06-11T00:00:00Z 2018-06-11 2019-03-07T11:22:58Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25502 |
url |
http://hdl.handle.net/10773/25502 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
978-972-789-541-0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
UA Editora |
publisher.none.fl_str_mv |
UA Editora |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594268684386304 |