Face recognition via sparse representation

Bibliographic Details
Main Author: Almeida, David Moreira de
Publication Date: 2019
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/29465
Summary: Face recognition has recently seen a peek in interest due to developments in deep learning. These developments incited great attention to the fi eld, not only from the research community, but also from a commercial perspective. While such methods provide the best accuracies when performing face recognition tasks, they often require millions of face images, a substantial amount of processing power and a considerable amount of time to develop. In the recent years, sparse representations have been successfully applied to a number of computer vision applications. One of those applications is face recognition. One of the first methods proposed for this task was the Sparse Representation Based Classi fication (SRC). Since then, several different methods, based on SRC have been proposed. These include dictionary learning based methods, as well as patch based classi fication. This thesis aims to study face recognition using sparse classi fication. Multiple methods will be explored, and some of these will be tested extensively in order to provide a comprehensive view of the fi eld.
id RCAP_2ad01fbeae27b02c6acb9fdd548064e2
oai_identifier_str oai:ria.ua.pt:10773/29465
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Face recognition via sparse representationFace recognitionSparse codingSparse representationDictionary learningComputer visionFace recognition has recently seen a peek in interest due to developments in deep learning. These developments incited great attention to the fi eld, not only from the research community, but also from a commercial perspective. While such methods provide the best accuracies when performing face recognition tasks, they often require millions of face images, a substantial amount of processing power and a considerable amount of time to develop. In the recent years, sparse representations have been successfully applied to a number of computer vision applications. One of those applications is face recognition. One of the first methods proposed for this task was the Sparse Representation Based Classi fication (SRC). Since then, several different methods, based on SRC have been proposed. These include dictionary learning based methods, as well as patch based classi fication. This thesis aims to study face recognition using sparse classi fication. Multiple methods will be explored, and some of these will be tested extensively in order to provide a comprehensive view of the fi eld.Recentemente houve um pico de interesse na área de reconhecimento facial, devido especialmente aos desenvolvimentos relacionados com "deep learning". Estes estimularam o interesse na área, não apenas numa perspetiva académica, mas também numa comercial. Apesar de tais métodos fornecerem a melhor precisão ao executar tarefas de reconhecimento facial, eles geralmente requerem milhões de imagens de faces, bastante poder de processamento e uma quantidade substancial de tempo para desenvolver. Nos últimos anos, representações esparsas foram aplicadas com sucesso a diversas aplicações de visão de computador. Uma dessas aplicações _e reconhecimento facial. Um dos primeiros métodos propostos para tal tarefa foi o "Sparse Representation Based Classification (SRC)". Entretanto, vários diferentes métodos baseados no SRC, foram propostos. Estes incluem métodos de aprendizagem de dicionários e métodos baseados em classificaçao de "patches" de imagens. O objetivo desta tese é estudar o reconhecimento facial utilizando representações esparsas. Múltiplos métodos vão ser explorados e alguns deles vão ser testados extensivamente de modo a providenciar uma visão compreensiva da área.2020-10-15T11:33:45Z2019-12-01T00:00:00Z2019-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29465engAlmeida, David Moreira deinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:27:53Zoai:ria.ua.pt:10773/29465Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:09:16.792512Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Face recognition via sparse representation
title Face recognition via sparse representation
spellingShingle Face recognition via sparse representation
Almeida, David Moreira de
Face recognition
Sparse coding
Sparse representation
Dictionary learning
Computer vision
title_short Face recognition via sparse representation
title_full Face recognition via sparse representation
title_fullStr Face recognition via sparse representation
title_full_unstemmed Face recognition via sparse representation
title_sort Face recognition via sparse representation
author Almeida, David Moreira de
author_facet Almeida, David Moreira de
author_role author
dc.contributor.author.fl_str_mv Almeida, David Moreira de
dc.subject.por.fl_str_mv Face recognition
Sparse coding
Sparse representation
Dictionary learning
Computer vision
topic Face recognition
Sparse coding
Sparse representation
Dictionary learning
Computer vision
description Face recognition has recently seen a peek in interest due to developments in deep learning. These developments incited great attention to the fi eld, not only from the research community, but also from a commercial perspective. While such methods provide the best accuracies when performing face recognition tasks, they often require millions of face images, a substantial amount of processing power and a considerable amount of time to develop. In the recent years, sparse representations have been successfully applied to a number of computer vision applications. One of those applications is face recognition. One of the first methods proposed for this task was the Sparse Representation Based Classi fication (SRC). Since then, several different methods, based on SRC have been proposed. These include dictionary learning based methods, as well as patch based classi fication. This thesis aims to study face recognition using sparse classi fication. Multiple methods will be explored, and some of these will be tested extensively in order to provide a comprehensive view of the fi eld.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01T00:00:00Z
2019-12
2020-10-15T11:33:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29465
url http://hdl.handle.net/10773/29465
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594340303175680