Face recognition via sparse representation
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/29465 |
Summary: | Face recognition has recently seen a peek in interest due to developments in deep learning. These developments incited great attention to the fi eld, not only from the research community, but also from a commercial perspective. While such methods provide the best accuracies when performing face recognition tasks, they often require millions of face images, a substantial amount of processing power and a considerable amount of time to develop. In the recent years, sparse representations have been successfully applied to a number of computer vision applications. One of those applications is face recognition. One of the first methods proposed for this task was the Sparse Representation Based Classi fication (SRC). Since then, several different methods, based on SRC have been proposed. These include dictionary learning based methods, as well as patch based classi fication. This thesis aims to study face recognition using sparse classi fication. Multiple methods will be explored, and some of these will be tested extensively in order to provide a comprehensive view of the fi eld. |
id |
RCAP_2ad01fbeae27b02c6acb9fdd548064e2 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/29465 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Face recognition via sparse representationFace recognitionSparse codingSparse representationDictionary learningComputer visionFace recognition has recently seen a peek in interest due to developments in deep learning. These developments incited great attention to the fi eld, not only from the research community, but also from a commercial perspective. While such methods provide the best accuracies when performing face recognition tasks, they often require millions of face images, a substantial amount of processing power and a considerable amount of time to develop. In the recent years, sparse representations have been successfully applied to a number of computer vision applications. One of those applications is face recognition. One of the first methods proposed for this task was the Sparse Representation Based Classi fication (SRC). Since then, several different methods, based on SRC have been proposed. These include dictionary learning based methods, as well as patch based classi fication. This thesis aims to study face recognition using sparse classi fication. Multiple methods will be explored, and some of these will be tested extensively in order to provide a comprehensive view of the fi eld.Recentemente houve um pico de interesse na área de reconhecimento facial, devido especialmente aos desenvolvimentos relacionados com "deep learning". Estes estimularam o interesse na área, não apenas numa perspetiva académica, mas também numa comercial. Apesar de tais métodos fornecerem a melhor precisão ao executar tarefas de reconhecimento facial, eles geralmente requerem milhões de imagens de faces, bastante poder de processamento e uma quantidade substancial de tempo para desenvolver. Nos últimos anos, representações esparsas foram aplicadas com sucesso a diversas aplicações de visão de computador. Uma dessas aplicações _e reconhecimento facial. Um dos primeiros métodos propostos para tal tarefa foi o "Sparse Representation Based Classification (SRC)". Entretanto, vários diferentes métodos baseados no SRC, foram propostos. Estes incluem métodos de aprendizagem de dicionários e métodos baseados em classificaçao de "patches" de imagens. O objetivo desta tese é estudar o reconhecimento facial utilizando representações esparsas. Múltiplos métodos vão ser explorados e alguns deles vão ser testados extensivamente de modo a providenciar uma visão compreensiva da área.2020-10-15T11:33:45Z2019-12-01T00:00:00Z2019-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29465engAlmeida, David Moreira deinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:27:53Zoai:ria.ua.pt:10773/29465Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:09:16.792512Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Face recognition via sparse representation |
title |
Face recognition via sparse representation |
spellingShingle |
Face recognition via sparse representation Almeida, David Moreira de Face recognition Sparse coding Sparse representation Dictionary learning Computer vision |
title_short |
Face recognition via sparse representation |
title_full |
Face recognition via sparse representation |
title_fullStr |
Face recognition via sparse representation |
title_full_unstemmed |
Face recognition via sparse representation |
title_sort |
Face recognition via sparse representation |
author |
Almeida, David Moreira de |
author_facet |
Almeida, David Moreira de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, David Moreira de |
dc.subject.por.fl_str_mv |
Face recognition Sparse coding Sparse representation Dictionary learning Computer vision |
topic |
Face recognition Sparse coding Sparse representation Dictionary learning Computer vision |
description |
Face recognition has recently seen a peek in interest due to developments in deep learning. These developments incited great attention to the fi eld, not only from the research community, but also from a commercial perspective. While such methods provide the best accuracies when performing face recognition tasks, they often require millions of face images, a substantial amount of processing power and a considerable amount of time to develop. In the recent years, sparse representations have been successfully applied to a number of computer vision applications. One of those applications is face recognition. One of the first methods proposed for this task was the Sparse Representation Based Classi fication (SRC). Since then, several different methods, based on SRC have been proposed. These include dictionary learning based methods, as well as patch based classi fication. This thesis aims to study face recognition using sparse classi fication. Multiple methods will be explored, and some of these will be tested extensively in order to provide a comprehensive view of the fi eld. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01T00:00:00Z 2019-12 2020-10-15T11:33:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/29465 |
url |
http://hdl.handle.net/10773/29465 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594340303175680 |