Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/42911 |
Summary: | The UNFCCC’s initiatives to combat climate change have spurred energy transition, leading to the emergence of zero-carbon energy markets. Accurate energy consumption forecasting is essential for optimizing the power grid and conserving resources amidst rising energy demand. This study aims to predict the next 24 hours of energy consumption for residential households within a local energy cooperative in Portugal. Leveraging historical energy consumption data and meteorological time series, the study focuses on implementing Machine Learning (ML) models, including xGBoost and LSTM algorithms. The analysis also encompasses traditional statistical forecasting models like ARIMA and Exponential Smoothing, alongside ML approaches. It investigates key features for consumption predictions and assesses the influence of meteorological data on forecast accuracy, while also clustering households into two groups based on consumption profiles. The analysis of the implemented models in unseen test data reveal that in the first cluster ARIMA had the best performance, with an MAE of 0.0783 kWh and a MASE of 0.9351, outperforming the two ML algorithms. In the second cluster, LSTM performed the best, achieving a MAE of 0.0372 kWh and a MASE of 0.9856. The study highlights the strong correlation between recent consumption data and future trends, with minimal impact from meteorological factors. The results confirm the effectiveness of statistical models in forecasting and highlight the potential for enhancing ML models in future research. |
id |
RCAP_2a3e60b61b216a81de89cdb550ac7e93 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/42911 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperativeLocal energy cooperativeMachine learningEnergy forecastingThe UNFCCC’s initiatives to combat climate change have spurred energy transition, leading to the emergence of zero-carbon energy markets. Accurate energy consumption forecasting is essential for optimizing the power grid and conserving resources amidst rising energy demand. This study aims to predict the next 24 hours of energy consumption for residential households within a local energy cooperative in Portugal. Leveraging historical energy consumption data and meteorological time series, the study focuses on implementing Machine Learning (ML) models, including xGBoost and LSTM algorithms. The analysis also encompasses traditional statistical forecasting models like ARIMA and Exponential Smoothing, alongside ML approaches. It investigates key features for consumption predictions and assesses the influence of meteorological data on forecast accuracy, while also clustering households into two groups based on consumption profiles. The analysis of the implemented models in unseen test data reveal that in the first cluster ARIMA had the best performance, with an MAE of 0.0783 kWh and a MASE of 0.9351, outperforming the two ML algorithms. In the second cluster, LSTM performed the best, achieving a MAE of 0.0372 kWh and a MASE of 0.9856. The study highlights the strong correlation between recent consumption data and future trends, with minimal impact from meteorological factors. The results confirm the effectiveness of statistical models in forecasting and highlight the potential for enhancing ML models in future research.As iniciativas da UNFCCC para combater as alterações climáticas têm impulsionado a transição energética, levando ao surgimento de mercados de carbono zero. Uma previsão precisa do consumo de energia é essencial para otimizar a rede elétrica e conservar recursos no contexto do aumento da procura por energia. Este estudo tem como objetivo prever as próximas 24 horas de consumo de energia para edifícios residenciais dentro de uma cooperativa de energia local em Portugal. Utilizando dados históricos de consumo de energia e séries temporais meteorológicas, o estudo concentra-se na implementação de modelos de Machine Learning (ML), incluindo algoritmos xGBoost e LSTM. A análise também abrange modelos tradicionais de previsão estatística como ARIMA e Exponential Smoothing, juntamente com abordagens de ML. Investigam-se características-chave para previsões de consumo e avalia-se a influência dos dados meteorológicos na precisão das previsões, enquanto também se agrupam os domicílios em dois clusters com base em perfis de consumo. A análise dos modelos implementados em dados de teste não vistos revela que, no primeiro cluster, o ARIMA obteve o melhor desempenho, com um MAE de 0.0783 kWh e um MASE de 0.9351, superando os dois algoritmos de ML. No segundo cluster, o LSTM teve o melhor desempenho, alcançando um MAE de 0.0372 kWh e um MASE de 0.9856. O estudo destaca a forte correlação entre dados de consumo recentes e tendências futuras, com mínimo impacto de fatores meteorológicos. Os resultados confirmam a eficácia dos modelos estatísticos na previsão e destacam o potencial para aprimorar os modelos de ML em pesquisas futuras.2024-11-26T09:16:25Z2024-07-19T00:00:00Z2024-07-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/42911engParedes, José António Santosinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-02T01:47:48Zoai:ria.ua.pt:10773/42911Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:16:56.296174Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative |
title |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative |
spellingShingle |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative Paredes, José António Santos Local energy cooperative Machine learning Energy forecasting |
title_short |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative |
title_full |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative |
title_fullStr |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative |
title_full_unstemmed |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative |
title_sort |
Machine learning for electricity consumption forecasting in residential buildings within a local energy cooperative |
author |
Paredes, José António Santos |
author_facet |
Paredes, José António Santos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Paredes, José António Santos |
dc.subject.por.fl_str_mv |
Local energy cooperative Machine learning Energy forecasting |
topic |
Local energy cooperative Machine learning Energy forecasting |
description |
The UNFCCC’s initiatives to combat climate change have spurred energy transition, leading to the emergence of zero-carbon energy markets. Accurate energy consumption forecasting is essential for optimizing the power grid and conserving resources amidst rising energy demand. This study aims to predict the next 24 hours of energy consumption for residential households within a local energy cooperative in Portugal. Leveraging historical energy consumption data and meteorological time series, the study focuses on implementing Machine Learning (ML) models, including xGBoost and LSTM algorithms. The analysis also encompasses traditional statistical forecasting models like ARIMA and Exponential Smoothing, alongside ML approaches. It investigates key features for consumption predictions and assesses the influence of meteorological data on forecast accuracy, while also clustering households into two groups based on consumption profiles. The analysis of the implemented models in unseen test data reveal that in the first cluster ARIMA had the best performance, with an MAE of 0.0783 kWh and a MASE of 0.9351, outperforming the two ML algorithms. In the second cluster, LSTM performed the best, achieving a MAE of 0.0372 kWh and a MASE of 0.9856. The study highlights the strong correlation between recent consumption data and future trends, with minimal impact from meteorological factors. The results confirm the effectiveness of statistical models in forecasting and highlight the potential for enhancing ML models in future research. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-26T09:16:25Z 2024-07-19T00:00:00Z 2024-07-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/42911 |
url |
http://hdl.handle.net/10773/42911 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597991190003712 |