Dynamics of the coquaternionic maps x^2 + bx
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/83464 |
Summary: | This paper deals with the dynamics of the one-parameter family of coquaternionic quadratic maps x2+ bx. By making use of recent results for the zeros of one-sided coquaternionic polynomials, the fixed points are analytically determined. The stability of these fixed points is also addressed, where, in some cases, due to the appearance of sets of non-isolated points, a suitably adapted notion of stability is used. The results obtained show clearly that this family is not dynamically equivalent to the simpler family x2+ c previously studied by the authors. Some numerical examples of other dynamics beyond fixed points are also presented. |
id |
RCAP_29290207886fee03bf9e252585c80e3c |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/83464 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Dynamics of the coquaternionic maps x^2 + bxCoquaternionic polynomialsCoquaternionsFixed pointsIteration of quadratic mapsCiências Naturais::MatemáticasScience & TechnologyThis paper deals with the dynamics of the one-parameter family of coquaternionic quadratic maps x2+ bx. By making use of recent results for the zeros of one-sided coquaternionic polynomials, the fixed points are analytically determined. The stability of these fixed points is also addressed, where, in some cases, due to the appearance of sets of non-isolated points, a suitably adapted notion of stability is used. The results obtained show clearly that this family is not dynamically equivalent to the simpler family x2+ c previously studied by the authors. Some numerical examples of other dynamics beyond fixed points are also presented.Research at CMAT was partially financed by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020. Research at NIPE has been financed by National Funds of the FCT - Fundação para a Ciência e a Tecnologia, within the Project UIDB/03182/2020.SpringerUniversidade do MinhoFalcão, M. I.Miranda, FernandoSeverino, RicardoSoares, M. J.20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/83464engFalcão, M. I., Miranda, F., Severino, R., & Soares, M. J. (2022, January 25). Dynamics of the coquaternionic maps x2 + bx. Rendiconti del Circolo Matematico di Palermo Series 2. Springer Science and Business Media LLC. http://doi.org/10.1007/s12215-021-00715-60009-725X1973-440910.1007/s12215-021-00715-6https://doi.org/10.1007/s12215-021-00715-6info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-06-08T01:19:09Zoai:repositorium.sdum.uminho.pt:1822/83464Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:40:46.069006Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Dynamics of the coquaternionic maps x^2 + bx |
title |
Dynamics of the coquaternionic maps x^2 + bx |
spellingShingle |
Dynamics of the coquaternionic maps x^2 + bx Falcão, M. I. Coquaternionic polynomials Coquaternions Fixed points Iteration of quadratic maps Ciências Naturais::Matemáticas Science & Technology |
title_short |
Dynamics of the coquaternionic maps x^2 + bx |
title_full |
Dynamics of the coquaternionic maps x^2 + bx |
title_fullStr |
Dynamics of the coquaternionic maps x^2 + bx |
title_full_unstemmed |
Dynamics of the coquaternionic maps x^2 + bx |
title_sort |
Dynamics of the coquaternionic maps x^2 + bx |
author |
Falcão, M. I. |
author_facet |
Falcão, M. I. Miranda, Fernando Severino, Ricardo Soares, M. J. |
author_role |
author |
author2 |
Miranda, Fernando Severino, Ricardo Soares, M. J. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Falcão, M. I. Miranda, Fernando Severino, Ricardo Soares, M. J. |
dc.subject.por.fl_str_mv |
Coquaternionic polynomials Coquaternions Fixed points Iteration of quadratic maps Ciências Naturais::Matemáticas Science & Technology |
topic |
Coquaternionic polynomials Coquaternions Fixed points Iteration of quadratic maps Ciências Naturais::Matemáticas Science & Technology |
description |
This paper deals with the dynamics of the one-parameter family of coquaternionic quadratic maps x2+ bx. By making use of recent results for the zeros of one-sided coquaternionic polynomials, the fixed points are analytically determined. The stability of these fixed points is also addressed, where, in some cases, due to the appearance of sets of non-isolated points, a suitably adapted notion of stability is used. The results obtained show clearly that this family is not dynamically equivalent to the simpler family x2+ c previously studied by the authors. Some numerical examples of other dynamics beyond fixed points are also presented. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/83464 |
url |
https://hdl.handle.net/1822/83464 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Falcão, M. I., Miranda, F., Severino, R., & Soares, M. J. (2022, January 25). Dynamics of the coquaternionic maps x2 + bx. Rendiconti del Circolo Matematico di Palermo Series 2. Springer Science and Business Media LLC. http://doi.org/10.1007/s12215-021-00715-6 0009-725X 1973-4409 10.1007/s12215-021-00715-6 https://doi.org/10.1007/s12215-021-00715-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594814909644800 |