Data preparation for marketing database creation: A case study
Main Author: | |
---|---|
Publication Date: | 2005 |
Other Authors: | , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/18442 |
Summary: | To increase effectiveness in their marketing and CRM activities many organizations are adopting strategies of Database Marketing (DBM). DBM faces today new challenges in business knowledge. Currently DBM strategies are mainly approached by classical statistical inference, which may fail when complex, multi-dimensional, and incomplete data is available. An alternative is to use Knowledge Discovery from Databases (KDD), which aims at automatic pattern extraction using Data Mining (DM) techniques. The patterns identified can be applied to the efficient characterization of the customers and to the database filtering process. This paper focus the problems commonly encountered in the data pre-processing, necessary to the success of the DM in a DBM project, through a case study. |
id |
RCAP_28af1d766acd88284adb7b8ba32d6bad |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/18442 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Data preparation for marketing database creation: A case studyTo increase effectiveness in their marketing and CRM activities many organizations are adopting strategies of Database Marketing (DBM). DBM faces today new challenges in business knowledge. Currently DBM strategies are mainly approached by classical statistical inference, which may fail when complex, multi-dimensional, and incomplete data is available. An alternative is to use Knowledge Discovery from Databases (KDD), which aims at automatic pattern extraction using Data Mining (DM) techniques. The patterns identified can be applied to the efficient characterization of the customers and to the database filtering process. This paper focus the problems commonly encountered in the data pre-processing, necessary to the success of the DM in a DBM project, through a case study.Ega - Empresa Gráfica Açoreana, Lda.Universidade do MinhoPinto, FilipeSantos, Manuel FilipeCortez, PauloQuintela, Hélder2005-042005-04-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/18442enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:34:44Zoai:repositorium.sdum.uminho.pt:1822/18442Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:22:50.550391Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Data preparation for marketing database creation: A case study |
title |
Data preparation for marketing database creation: A case study |
spellingShingle |
Data preparation for marketing database creation: A case study Pinto, Filipe |
title_short |
Data preparation for marketing database creation: A case study |
title_full |
Data preparation for marketing database creation: A case study |
title_fullStr |
Data preparation for marketing database creation: A case study |
title_full_unstemmed |
Data preparation for marketing database creation: A case study |
title_sort |
Data preparation for marketing database creation: A case study |
author |
Pinto, Filipe |
author_facet |
Pinto, Filipe Santos, Manuel Filipe Cortez, Paulo Quintela, Hélder |
author_role |
author |
author2 |
Santos, Manuel Filipe Cortez, Paulo Quintela, Hélder |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Pinto, Filipe Santos, Manuel Filipe Cortez, Paulo Quintela, Hélder |
description |
To increase effectiveness in their marketing and CRM activities many organizations are adopting strategies of Database Marketing (DBM). DBM faces today new challenges in business knowledge. Currently DBM strategies are mainly approached by classical statistical inference, which may fail when complex, multi-dimensional, and incomplete data is available. An alternative is to use Knowledge Discovery from Databases (KDD), which aims at automatic pattern extraction using Data Mining (DM) techniques. The patterns identified can be applied to the efficient characterization of the customers and to the database filtering process. This paper focus the problems commonly encountered in the data pre-processing, necessary to the success of the DM in a DBM project, through a case study. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-04 2005-04-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/18442 |
url |
http://hdl.handle.net/1822/18442 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Ega - Empresa Gráfica Açoreana, Lda. |
publisher.none.fl_str_mv |
Ega - Empresa Gráfica Açoreana, Lda. |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595280675569664 |