Sentiment Analysis of Portuguese Political Parties Communication
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Outros Autores: | , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/126515 |
Resumo: | Costa, C. J., Aparicio, M., & Aparicio, J. (2021). Sentiment Analysis of Portuguese Political Parties Communication. In Proceedings of the 39th ACM International Conference on the Design of Communication (SIGDOC '21) (pp. 63-69). Association for Computing Machinery (ACM). https://doi.org/10.1145/3472714.3473624 |
| id |
RCAP_25cb16d3980d3aca6d8bbe76eaabccd6 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/126515 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Sentiment Analysis of Portuguese Political Parties Communicationdocument similaritymachine learningpolitical partiessentiment analysisTwitterComputer Networks and CommunicationsComputer Science ApplicationsSoftwareSDG 11 - Sustainable Cities and CommunitiesSDG 16 - Peace, Justice and Strong InstitutionsCosta, C. J., Aparicio, M., & Aparicio, J. (2021). Sentiment Analysis of Portuguese Political Parties Communication. In Proceedings of the 39th ACM International Conference on the Design of Communication (SIGDOC '21) (pp. 63-69). Association for Computing Machinery (ACM). https://doi.org/10.1145/3472714.3473624Political communication in social media has gained increasing importance in the last years. In this study, we analyze the political parties’ communication on Twitter and understand the sentiment of their communication. First by identifying their communication performance regarding the daily number of tweets, favorite tweets, number of retweets per day and per political party. We present a sentiment analysis by the political party using tweets data. In this study, we propose an explanatory model with the main drivers of retweets. To conduct this study, our approach used data analysis and machine learning techniques methods. Results indicate the main determinants that influence future retweets of political posts globally. Here we present a comparison of the communication content between tweets posts and the political parties’ programs available on their institutional websites. We identify the similarities between tweets and formal programs per party and among all parties. This study contributes to analyze the coherence and effectiveness of the political parties’ communication.ACM - Association for Computing MachineryNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCosta, Carlos J.Aparicio, ManuelaAparicio, Joao2021-10-22T03:55:42Z2021-10-122021-10-12T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion7application/pdfhttp://hdl.handle.net/10362/126515eng978-1-4503-8628-9PURE: 34339974https://doi.org/10.1145/3472714.3473624info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:56:48Zoai:run.unl.pt:10362/126515Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:27:51.430544Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Sentiment Analysis of Portuguese Political Parties Communication |
| title |
Sentiment Analysis of Portuguese Political Parties Communication |
| spellingShingle |
Sentiment Analysis of Portuguese Political Parties Communication Costa, Carlos J. document similarity machine learning political parties sentiment analysis Computer Networks and Communications Computer Science Applications Software SDG 11 - Sustainable Cities and Communities SDG 16 - Peace, Justice and Strong Institutions |
| title_short |
Sentiment Analysis of Portuguese Political Parties Communication |
| title_full |
Sentiment Analysis of Portuguese Political Parties Communication |
| title_fullStr |
Sentiment Analysis of Portuguese Political Parties Communication |
| title_full_unstemmed |
Sentiment Analysis of Portuguese Political Parties Communication |
| title_sort |
Sentiment Analysis of Portuguese Political Parties Communication |
| author |
Costa, Carlos J. |
| author_facet |
Costa, Carlos J. Aparicio, Manuela Aparicio, Joao |
| author_role |
author |
| author2 |
Aparicio, Manuela Aparicio, Joao |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Costa, Carlos J. Aparicio, Manuela Aparicio, Joao |
| dc.subject.por.fl_str_mv |
document similarity machine learning political parties sentiment analysis Computer Networks and Communications Computer Science Applications Software SDG 11 - Sustainable Cities and Communities SDG 16 - Peace, Justice and Strong Institutions |
| topic |
document similarity machine learning political parties sentiment analysis Computer Networks and Communications Computer Science Applications Software SDG 11 - Sustainable Cities and Communities SDG 16 - Peace, Justice and Strong Institutions |
| description |
Costa, C. J., Aparicio, M., & Aparicio, J. (2021). Sentiment Analysis of Portuguese Political Parties Communication. In Proceedings of the 39th ACM International Conference on the Design of Communication (SIGDOC '21) (pp. 63-69). Association for Computing Machinery (ACM). https://doi.org/10.1145/3472714.3473624 |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-10-22T03:55:42Z 2021-10-12 2021-10-12T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/126515 |
| url |
http://hdl.handle.net/10362/126515 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-1-4503-8628-9 PURE: 34339974 https://doi.org/10.1145/3472714.3473624 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
7 application/pdf |
| dc.publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
| publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596712014315520 |