Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/165293 |
Summary: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_24a2664e8cc65e3661c2f76228ceab5b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/165293 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning ModelsForecastingMachine Learning ModelsPythonTime SeriesSiemensBusiness AnalyticsRevenue ForecastingDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThis internship report introduces an innovative research investigation in the field of revenue forecasting in corporate settings, utilising python, and sophisticated machine learning algorithms to outperform conventional forecasting approaches. This study employs a novel methodology by utilising different combinations of machine learning models and optimising parameters to improve the precision of predictive models. The implementations resulted in a considerable improvement in the prediction accuracy, making this application a reliable source of revenue prediction for Siemens. Despite the inherent constraints associated with the amount and variety of input data, like the limitation of historical data, this study displays a noteworthy enhancement in time series prediction, surpassing traditional human methods. This dissertation presents an original approach that offers a realistic demonstration of the application and efficacy of advanced machine learning techniques in the domain of revenue forecasting. The results provide significant insights and a solid basis for future advancements in the field of business analytics, hence facilitating the creation of more sophisticated and effective digital revenue forecasting systems.Pinheiro, Flávio Luís PortasRUNSimões, Guilherme Costa Marques Lopes2024-03-22T13:36:34Z2024-02-082024-02-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/165293TID:203553640enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:19:51Zoai:run.unl.pt:10362/165293Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:50:38.689679Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models |
title |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models |
spellingShingle |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models Simões, Guilherme Costa Marques Lopes Forecasting Machine Learning Models Python Time Series Siemens Business Analytics Revenue Forecasting Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models |
title_full |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models |
title_fullStr |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models |
title_full_unstemmed |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models |
title_sort |
Forecasting the Future at Siemens: Innovations in Time Series Analysis with Machine Learning Models |
author |
Simões, Guilherme Costa Marques Lopes |
author_facet |
Simões, Guilherme Costa Marques Lopes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Flávio Luís Portas RUN |
dc.contributor.author.fl_str_mv |
Simões, Guilherme Costa Marques Lopes |
dc.subject.por.fl_str_mv |
Forecasting Machine Learning Models Python Time Series Siemens Business Analytics Revenue Forecasting Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Forecasting Machine Learning Models Python Time Series Siemens Business Analytics Revenue Forecasting Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-22T13:36:34Z 2024-02-08 2024-02-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/165293 TID:203553640 |
url |
http://hdl.handle.net/10362/165293 |
identifier_str_mv |
TID:203553640 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597004158074880 |