Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster]
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/156122 |
Resumo: | Pietropolli, G., Camerota verdù, F. J., Manzoni, L., & Castelli, M. (2023). Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster]. In S. Silva, & L. Paquete (Eds.), GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary ComputationJuly 2023 (pp. 619-622). Association for Computing Machinery (ACM). https://doi.org/10.1145/3583133.3590574 |
| id |
RCAP_21c4bcf5388cda0c1fc0b17d859602f7 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/156122 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster]genetic programminggradient descentlocal searchadammemetic searchSoftwareComputational Theory and MathematicsComputer Science ApplicationsPietropolli, G., Camerota verdù, F. J., Manzoni, L., & Castelli, M. (2023). Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster]. In S. Silva, & L. Paquete (Eds.), GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary ComputationJuly 2023 (pp. 619-622). Association for Computing Machinery (ACM). https://doi.org/10.1145/3583133.3590574Symbolic regression is a common problem in genetic programming (GP), but the syntactic search carried out by the standard GP algorithm often struggles to tune the learned expressions. On the other hand, gradient-based optimizers can efficiently tune parametric functions by exploring the search space locally. While there is a large amount of research on the combination of evolutionary algorithms and local search (LS) strategies, few of these studies deal with GP. To get the best from both worlds, we propose embedding learnable parameters in GP programs and combining the standard GP evolutionary approach with a gradient-based refinement of the individuals employing the Adam optimizer. We devise two different algorithms that differ in how these parameters are shared in the expression operators and report experimental results performed on a set of standard real-life application datasets. Our findings show that the proposed gradient-based LS approach can be effectively combined with GP to outperform the original algorithm.ACM - Association for Computing MachineryInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNPietropolli, GloriaCamerota verdù, Federico julianManzoni, LucaCastelli, Mauro2023-08-01T22:13:40Z2023-07-252023-07-25T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion4application/pdfhttp://hdl.handle.net/10362/156122eng979-8-4007-0120-7PURE: 67866554https://doi.org/10.1145/3583133.3590574info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:13:33Zoai:run.unl.pt:10362/156122Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:44:01.013455Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] |
| title |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] |
| spellingShingle |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] Pietropolli, Gloria genetic programming gradient descent local search adam memetic search Software Computational Theory and Mathematics Computer Science Applications |
| title_short |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] |
| title_full |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] |
| title_fullStr |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] |
| title_full_unstemmed |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] |
| title_sort |
Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster] |
| author |
Pietropolli, Gloria |
| author_facet |
Pietropolli, Gloria Camerota verdù, Federico julian Manzoni, Luca Castelli, Mauro |
| author_role |
author |
| author2 |
Camerota verdù, Federico julian Manzoni, Luca Castelli, Mauro |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Pietropolli, Gloria Camerota verdù, Federico julian Manzoni, Luca Castelli, Mauro |
| dc.subject.por.fl_str_mv |
genetic programming gradient descent local search adam memetic search Software Computational Theory and Mathematics Computer Science Applications |
| topic |
genetic programming gradient descent local search adam memetic search Software Computational Theory and Mathematics Computer Science Applications |
| description |
Pietropolli, G., Camerota verdù, F. J., Manzoni, L., & Castelli, M. (2023). Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent [Poster]. In S. Silva, & L. Paquete (Eds.), GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary ComputationJuly 2023 (pp. 619-622). Association for Computing Machinery (ACM). https://doi.org/10.1145/3583133.3590574 |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-08-01T22:13:40Z 2023-07-25 2023-07-25T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/156122 |
| url |
http://hdl.handle.net/10362/156122 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
979-8-4007-0120-7 PURE: 67866554 https://doi.org/10.1145/3583133.3590574 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
4 application/pdf |
| dc.publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
| publisher.none.fl_str_mv |
ACM - Association for Computing Machinery |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596924733685760 |