Hyperparameter self-tuning for data streams
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Other Authors: | , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.22/18698 |
Summary: | The number of Internet of Things devices generating data streams is expected to grow exponentially with the support of emergent technologies such as 5G networks. Therefore, the online processing of these data streams requires the design and development of suitable machine learning algorithms, able to learn online, as data is generated. Like their batch-learning counterparts, stream-based learning algorithms require careful hyperparameter settings. However, this problem is exacerbated in online learning settings, especially with the occurrence of concept drifts, which frequently require the reconfiguration of hyperparameters. In this article, we present SSPT, an extension of the Self Parameter Tuning (SPT) optimisation algorithm for data streams. We apply the Nelder–Mead algorithm to dynamically-sized samples, converging to optimal settings in a single pass over data while using a relatively small number of hyperparameter configurations. In addition, our proposal automatically readjusts hyperparameters when concept drift occurs. To assess the effectiveness of SSPT, the algorithm is evaluated with three different machine learning problems: recommendation, regression, and classification. Experiments with well-known data sets show that the proposed algorithm can outperform previous hyperparameter tuning efforts by human experts. Results also show that SSPT converges significantly faster and presents at least similar accuracy when compared with the previous double-pass version of the SPT algorithm. |
| id |
RCAP_20f0a314c1e21462616aaba5f00a57b5 |
|---|---|
| oai_identifier_str |
oai:recipp.ipp.pt:10400.22/18698 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Hyperparameter self-tuning for data streamsData StreamsOptimisationHyperparametersThe number of Internet of Things devices generating data streams is expected to grow exponentially with the support of emergent technologies such as 5G networks. Therefore, the online processing of these data streams requires the design and development of suitable machine learning algorithms, able to learn online, as data is generated. Like their batch-learning counterparts, stream-based learning algorithms require careful hyperparameter settings. However, this problem is exacerbated in online learning settings, especially with the occurrence of concept drifts, which frequently require the reconfiguration of hyperparameters. In this article, we present SSPT, an extension of the Self Parameter Tuning (SPT) optimisation algorithm for data streams. We apply the Nelder–Mead algorithm to dynamically-sized samples, converging to optimal settings in a single pass over data while using a relatively small number of hyperparameter configurations. In addition, our proposal automatically readjusts hyperparameters when concept drift occurs. To assess the effectiveness of SSPT, the algorithm is evaluated with three different machine learning problems: recommendation, regression, and classification. Experiments with well-known data sets show that the proposed algorithm can outperform previous hyperparameter tuning efforts by human experts. Results also show that SSPT converges significantly faster and presents at least similar accuracy when compared with the previous double-pass version of the SPT algorithm.ElsevierREPOSITÓRIO P.PORTOVeloso, BrunoGama, JoãoMalheiro, BeneditaVinagre, João2021-10-12T15:59:48Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/18698eng2076-341710.1016/j.inffus.2021.04.011info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:25:36Zoai:recipp.ipp.pt:10400.22/18698Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:53:43.519632Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Hyperparameter self-tuning for data streams |
| title |
Hyperparameter self-tuning for data streams |
| spellingShingle |
Hyperparameter self-tuning for data streams Veloso, Bruno Data Streams Optimisation Hyperparameters |
| title_short |
Hyperparameter self-tuning for data streams |
| title_full |
Hyperparameter self-tuning for data streams |
| title_fullStr |
Hyperparameter self-tuning for data streams |
| title_full_unstemmed |
Hyperparameter self-tuning for data streams |
| title_sort |
Hyperparameter self-tuning for data streams |
| author |
Veloso, Bruno |
| author_facet |
Veloso, Bruno Gama, João Malheiro, Benedita Vinagre, João |
| author_role |
author |
| author2 |
Gama, João Malheiro, Benedita Vinagre, João |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
| dc.contributor.author.fl_str_mv |
Veloso, Bruno Gama, João Malheiro, Benedita Vinagre, João |
| dc.subject.por.fl_str_mv |
Data Streams Optimisation Hyperparameters |
| topic |
Data Streams Optimisation Hyperparameters |
| description |
The number of Internet of Things devices generating data streams is expected to grow exponentially with the support of emergent technologies such as 5G networks. Therefore, the online processing of these data streams requires the design and development of suitable machine learning algorithms, able to learn online, as data is generated. Like their batch-learning counterparts, stream-based learning algorithms require careful hyperparameter settings. However, this problem is exacerbated in online learning settings, especially with the occurrence of concept drifts, which frequently require the reconfiguration of hyperparameters. In this article, we present SSPT, an extension of the Self Parameter Tuning (SPT) optimisation algorithm for data streams. We apply the Nelder–Mead algorithm to dynamically-sized samples, converging to optimal settings in a single pass over data while using a relatively small number of hyperparameter configurations. In addition, our proposal automatically readjusts hyperparameters when concept drift occurs. To assess the effectiveness of SSPT, the algorithm is evaluated with three different machine learning problems: recommendation, regression, and classification. Experiments with well-known data sets show that the proposed algorithm can outperform previous hyperparameter tuning efforts by human experts. Results also show that SSPT converges significantly faster and presents at least similar accuracy when compared with the previous double-pass version of the SPT algorithm. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-10-12T15:59:48Z 2021 2021-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/18698 |
| url |
http://hdl.handle.net/10400.22/18698 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
2076-3417 10.1016/j.inffus.2021.04.011 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833600745535963136 |