Using simplex gradients of nonsmooth functions in direct search methods

Bibliographic Details
Main Author: Custódio, A. L.
Publication Date: 2006
Other Authors: Dennis Jr., John E., Vicente, Luís Nunes
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/11326
Summary: It has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions in the context of direct search methods like the Generalized Pattern Search (GPS) and the Mesh Adaptive Direct Search (MADS), for which there exists a convergence analysis in the nonsmooth setting. Our analysis does not require continuous differentiability and can be seen as an extension of the accuracy properties of simplex gradients known for smooth functions. Secondly, we test the use of simplex gradients when pattern search is applied to nonsmooth functions, confirming the merit of the poll ordering strategy for such problems.
id RCAP_20e7ffcefb48fe97be94db2873a4f37e
oai_identifier_str oai:estudogeral.uc.pt:10316/11326
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Using simplex gradients of nonsmooth functions in direct search methodsDerivative free optimizationSimplex gradientsPoisednessNonsmooth analysisGeneralized pattern search methodsMesh adaptive direct searchIt has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions in the context of direct search methods like the Generalized Pattern Search (GPS) and the Mesh Adaptive Direct Search (MADS), for which there exists a convergence analysis in the nonsmooth setting. Our analysis does not require continuous differentiability and can be seen as an extension of the accuracy properties of simplex gradients known for smooth functions. Secondly, we test the use of simplex gradients when pattern search is applied to nonsmooth functions, confirming the merit of the poll ordering strategy for such problems.Centro de Matemática da Universidade de Coimbra; FCT under grant POCI/MAT/59442/2004; Centro de Matemática e Aplicações da Universidade Nova da LisboaCentro de Matemática da Universidade de Coimbra2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11326https://hdl.handle.net/10316/11326engPré-Publicações DMUC. 06-48 (2006)Custódio, A. L.Dennis Jr., John E.Vicente, Luís Nunesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-29T10:04:37Zoai:estudogeral.uc.pt:10316/11326Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:22.680853Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Using simplex gradients of nonsmooth functions in direct search methods
title Using simplex gradients of nonsmooth functions in direct search methods
spellingShingle Using simplex gradients of nonsmooth functions in direct search methods
Custódio, A. L.
Derivative free optimization
Simplex gradients
Poisedness
Nonsmooth analysis
Generalized pattern search methods
Mesh adaptive direct search
title_short Using simplex gradients of nonsmooth functions in direct search methods
title_full Using simplex gradients of nonsmooth functions in direct search methods
title_fullStr Using simplex gradients of nonsmooth functions in direct search methods
title_full_unstemmed Using simplex gradients of nonsmooth functions in direct search methods
title_sort Using simplex gradients of nonsmooth functions in direct search methods
author Custódio, A. L.
author_facet Custódio, A. L.
Dennis Jr., John E.
Vicente, Luís Nunes
author_role author
author2 Dennis Jr., John E.
Vicente, Luís Nunes
author2_role author
author
dc.contributor.author.fl_str_mv Custódio, A. L.
Dennis Jr., John E.
Vicente, Luís Nunes
dc.subject.por.fl_str_mv Derivative free optimization
Simplex gradients
Poisedness
Nonsmooth analysis
Generalized pattern search methods
Mesh adaptive direct search
topic Derivative free optimization
Simplex gradients
Poisedness
Nonsmooth analysis
Generalized pattern search methods
Mesh adaptive direct search
description It has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions in the context of direct search methods like the Generalized Pattern Search (GPS) and the Mesh Adaptive Direct Search (MADS), for which there exists a convergence analysis in the nonsmooth setting. Our analysis does not require continuous differentiability and can be seen as an extension of the accuracy properties of simplex gradients known for smooth functions. Secondly, we test the use of simplex gradients when pattern search is applied to nonsmooth functions, confirming the merit of the poll ordering strategy for such problems.
publishDate 2006
dc.date.none.fl_str_mv 2006
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/11326
https://hdl.handle.net/10316/11326
url https://hdl.handle.net/10316/11326
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pré-Publicações DMUC. 06-48 (2006)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602339480535040