An operational method to solve fractional differential equations
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2014 |
| Outros Autores: | |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/18647 |
Resumo: | In this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem. |
| id |
RCAP_20710da355e9cc8a5b3c29dd46610062 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/18647 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
An operational method to solve fractional differential equationsRiemann-Liouville and Caputo derivativesFractional differential equationsFractional Laguerre differential equationMellin and Laplace transformsIn this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem.Seenith Sivasundaram2017-10-26T10:02:06Z2014-12-01T00:00:00Z2014-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18647eng1551-761610.1063/1.4904690Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:04:07Zoai:ria.ua.pt:10773/18647Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:56:17.010719Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
An operational method to solve fractional differential equations |
| title |
An operational method to solve fractional differential equations |
| spellingShingle |
An operational method to solve fractional differential equations Rodrigues, M. M. Riemann-Liouville and Caputo derivatives Fractional differential equations Fractional Laguerre differential equation Mellin and Laplace transforms |
| title_short |
An operational method to solve fractional differential equations |
| title_full |
An operational method to solve fractional differential equations |
| title_fullStr |
An operational method to solve fractional differential equations |
| title_full_unstemmed |
An operational method to solve fractional differential equations |
| title_sort |
An operational method to solve fractional differential equations |
| author |
Rodrigues, M. M. |
| author_facet |
Rodrigues, M. M. Vieira, N. |
| author_role |
author |
| author2 |
Vieira, N. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Rodrigues, M. M. Vieira, N. |
| dc.subject.por.fl_str_mv |
Riemann-Liouville and Caputo derivatives Fractional differential equations Fractional Laguerre differential equation Mellin and Laplace transforms |
| topic |
Riemann-Liouville and Caputo derivatives Fractional differential equations Fractional Laguerre differential equation Mellin and Laplace transforms |
| description |
In this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem. |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-12-01T00:00:00Z 2014-12 2017-10-26T10:02:06Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/18647 |
| url |
http://hdl.handle.net/10773/18647 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1551-7616 10.1063/1.4904690 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Seenith Sivasundaram |
| publisher.none.fl_str_mv |
Seenith Sivasundaram |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594192105832448 |