Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends

Bibliographic Details
Main Author: Górriz, J. M.
Publication Date: 2023
Other Authors: Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J. E., Atzmueller, M., Ballarini, F., Barakova, E., Bologna, G., Bonomini, P., Castellanos-Dominguez, G., Castillo-Barnes, D., Cho, S. B., Contreras, R., Cuadra, J. M., Domínguez, E., Domínguez-Mateos, F., Duro, R. J., Elizondo, D., Fernández-Caballero, A., Fernandez-Jover, E., Formoso, M. A., Gallego-Molina, N. J., Gamazo, J., González, J. García, Garcia-Rodriguez, J., Garre, C., Garrigós, J., Gómez-Rodellar, A., Gómez-Vilda, P., Graña, M., Guerrero-Rodriguez, B., Hendrikse, S. C. F., Jimenez-Mesa, C., Jodra-Chuan, M., Julian, V., Kotz, G., Kutt, K., Leming, M., de Lope, J., Macas, B., Marrero-Aguiar, V., Martinez, J. J., Martinez-Murcia, F. J., Martínez-Tomás, R., Mekyska, J., Nalepa, G. J., Novais, Paulo, Orellana, D., Ortiz, A., Palacios-Alonso, D., Palma, J., ATLAS Collaboration
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/89841
Summary: Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.
id RCAP_2015e69ea45e56798799f8549a6ffda0
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/89841
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Computational approaches to explainable artificial intelligence: Advances in theory, applications and trendsBiomedical applicationsComputational approachesComputer-aided diagnosis systemsData scienceDeep learningExplainable artificial intelligenceMachine learningNeuroscienceRoboticsDeep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.MCIU - Nvidia(UMA18-FEDERJA-084)ElsevierUniversidade do MinhoGórriz, J. M.Álvarez-Illán, I.Álvarez-Marquina, A.Arco, J. E.Atzmueller, M.Ballarini, F.Barakova, E.Bologna, G.Bonomini, P.Castellanos-Dominguez, G.Castillo-Barnes, D.Cho, S. B.Contreras, R.Cuadra, J. M.Domínguez, E.Domínguez-Mateos, F.Duro, R. J.Elizondo, D.Fernández-Caballero, A.Fernandez-Jover, E.Formoso, M. A.Gallego-Molina, N. J.Gamazo, J.González, J. GarcíaGarcia-Rodriguez, J.Garre, C.Garrigós, J.Gómez-Rodellar, A.Gómez-Vilda, P.Graña, M.Guerrero-Rodriguez, B.Hendrikse, S. C. F.Jimenez-Mesa, C.Jodra-Chuan, M.Julian, V.Kotz, G.Kutt, K.Leming, M.de Lope, J.Macas, B.Marrero-Aguiar, V.Martinez, J. J.Martinez-Murcia, F. J.Martínez-Tomás, R.Mekyska, J.Nalepa, G. J.Novais, PauloOrellana, D.Ortiz, A.Palacios-Alonso, D.Palma, J.ATLAS Collaboration2023-12-012023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/89841engGórriz, J. M., Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J. E., Atzmueller, M., Ballarini, F., … Ferrández-Vicente, J. M. (2023, December). Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends. Information Fusion. Elsevier BV. http://doi.org/10.1016/j.inffus.2023.1019451566-253510.1016/j.inffus.2023.101945info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:32:32Zoai:repositorium.sdum.uminho.pt:1822/89841Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:21:21.478489Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
title Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
spellingShingle Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
Górriz, J. M.
Biomedical applications
Computational approaches
Computer-aided diagnosis systems
Data science
Deep learning
Explainable artificial intelligence
Machine learning
Neuroscience
Robotics
title_short Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
title_full Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
title_fullStr Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
title_full_unstemmed Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
title_sort Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
author Górriz, J. M.
author_facet Górriz, J. M.
Álvarez-Illán, I.
Álvarez-Marquina, A.
Arco, J. E.
Atzmueller, M.
Ballarini, F.
Barakova, E.
Bologna, G.
Bonomini, P.
Castellanos-Dominguez, G.
Castillo-Barnes, D.
Cho, S. B.
Contreras, R.
Cuadra, J. M.
Domínguez, E.
Domínguez-Mateos, F.
Duro, R. J.
Elizondo, D.
Fernández-Caballero, A.
Fernandez-Jover, E.
Formoso, M. A.
Gallego-Molina, N. J.
Gamazo, J.
González, J. García
Garcia-Rodriguez, J.
Garre, C.
Garrigós, J.
Gómez-Rodellar, A.
Gómez-Vilda, P.
Graña, M.
Guerrero-Rodriguez, B.
Hendrikse, S. C. F.
Jimenez-Mesa, C.
Jodra-Chuan, M.
Julian, V.
Kotz, G.
Kutt, K.
Leming, M.
de Lope, J.
Macas, B.
Marrero-Aguiar, V.
Martinez, J. J.
Martinez-Murcia, F. J.
Martínez-Tomás, R.
Mekyska, J.
Nalepa, G. J.
Novais, Paulo
Orellana, D.
Ortiz, A.
Palacios-Alonso, D.
Palma, J.
ATLAS Collaboration
author_role author
author2 Álvarez-Illán, I.
Álvarez-Marquina, A.
Arco, J. E.
Atzmueller, M.
Ballarini, F.
Barakova, E.
Bologna, G.
Bonomini, P.
Castellanos-Dominguez, G.
Castillo-Barnes, D.
Cho, S. B.
Contreras, R.
Cuadra, J. M.
Domínguez, E.
Domínguez-Mateos, F.
Duro, R. J.
Elizondo, D.
Fernández-Caballero, A.
Fernandez-Jover, E.
Formoso, M. A.
Gallego-Molina, N. J.
Gamazo, J.
González, J. García
Garcia-Rodriguez, J.
Garre, C.
Garrigós, J.
Gómez-Rodellar, A.
Gómez-Vilda, P.
Graña, M.
Guerrero-Rodriguez, B.
Hendrikse, S. C. F.
Jimenez-Mesa, C.
Jodra-Chuan, M.
Julian, V.
Kotz, G.
Kutt, K.
Leming, M.
de Lope, J.
Macas, B.
Marrero-Aguiar, V.
Martinez, J. J.
Martinez-Murcia, F. J.
Martínez-Tomás, R.
Mekyska, J.
Nalepa, G. J.
Novais, Paulo
Orellana, D.
Ortiz, A.
Palacios-Alonso, D.
Palma, J.
ATLAS Collaboration
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Górriz, J. M.
Álvarez-Illán, I.
Álvarez-Marquina, A.
Arco, J. E.
Atzmueller, M.
Ballarini, F.
Barakova, E.
Bologna, G.
Bonomini, P.
Castellanos-Dominguez, G.
Castillo-Barnes, D.
Cho, S. B.
Contreras, R.
Cuadra, J. M.
Domínguez, E.
Domínguez-Mateos, F.
Duro, R. J.
Elizondo, D.
Fernández-Caballero, A.
Fernandez-Jover, E.
Formoso, M. A.
Gallego-Molina, N. J.
Gamazo, J.
González, J. García
Garcia-Rodriguez, J.
Garre, C.
Garrigós, J.
Gómez-Rodellar, A.
Gómez-Vilda, P.
Graña, M.
Guerrero-Rodriguez, B.
Hendrikse, S. C. F.
Jimenez-Mesa, C.
Jodra-Chuan, M.
Julian, V.
Kotz, G.
Kutt, K.
Leming, M.
de Lope, J.
Macas, B.
Marrero-Aguiar, V.
Martinez, J. J.
Martinez-Murcia, F. J.
Martínez-Tomás, R.
Mekyska, J.
Nalepa, G. J.
Novais, Paulo
Orellana, D.
Ortiz, A.
Palacios-Alonso, D.
Palma, J.
ATLAS Collaboration
dc.subject.por.fl_str_mv Biomedical applications
Computational approaches
Computer-aided diagnosis systems
Data science
Deep learning
Explainable artificial intelligence
Machine learning
Neuroscience
Robotics
topic Biomedical applications
Computational approaches
Computer-aided diagnosis systems
Data science
Deep learning
Explainable artificial intelligence
Machine learning
Neuroscience
Robotics
description Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-01
2023-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/89841
url https://hdl.handle.net/1822/89841
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Górriz, J. M., Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J. E., Atzmueller, M., Ballarini, F., … Ferrández-Vicente, J. M. (2023, December). Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends. Information Fusion. Elsevier BV. http://doi.org/10.1016/j.inffus.2023.101945
1566-2535
10.1016/j.inffus.2023.101945
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595265002504192