Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/89841 |
Summary: | Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications. |
id |
RCAP_2015e69ea45e56798799f8549a6ffda0 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/89841 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trendsBiomedical applicationsComputational approachesComputer-aided diagnosis systemsData scienceDeep learningExplainable artificial intelligenceMachine learningNeuroscienceRoboticsDeep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications.MCIU - Nvidia(UMA18-FEDERJA-084)ElsevierUniversidade do MinhoGórriz, J. M.Álvarez-Illán, I.Álvarez-Marquina, A.Arco, J. E.Atzmueller, M.Ballarini, F.Barakova, E.Bologna, G.Bonomini, P.Castellanos-Dominguez, G.Castillo-Barnes, D.Cho, S. B.Contreras, R.Cuadra, J. M.Domínguez, E.Domínguez-Mateos, F.Duro, R. J.Elizondo, D.Fernández-Caballero, A.Fernandez-Jover, E.Formoso, M. A.Gallego-Molina, N. J.Gamazo, J.González, J. GarcíaGarcia-Rodriguez, J.Garre, C.Garrigós, J.Gómez-Rodellar, A.Gómez-Vilda, P.Graña, M.Guerrero-Rodriguez, B.Hendrikse, S. C. F.Jimenez-Mesa, C.Jodra-Chuan, M.Julian, V.Kotz, G.Kutt, K.Leming, M.de Lope, J.Macas, B.Marrero-Aguiar, V.Martinez, J. J.Martinez-Murcia, F. J.Martínez-Tomás, R.Mekyska, J.Nalepa, G. J.Novais, PauloOrellana, D.Ortiz, A.Palacios-Alonso, D.Palma, J.ATLAS Collaboration2023-12-012023-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/89841engGórriz, J. M., Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J. E., Atzmueller, M., Ballarini, F., … Ferrández-Vicente, J. M. (2023, December). Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends. Information Fusion. Elsevier BV. http://doi.org/10.1016/j.inffus.2023.1019451566-253510.1016/j.inffus.2023.101945info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:32:32Zoai:repositorium.sdum.uminho.pt:1822/89841Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:21:21.478489Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends |
title |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends |
spellingShingle |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends Górriz, J. M. Biomedical applications Computational approaches Computer-aided diagnosis systems Data science Deep learning Explainable artificial intelligence Machine learning Neuroscience Robotics |
title_short |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends |
title_full |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends |
title_fullStr |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends |
title_full_unstemmed |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends |
title_sort |
Computational approaches to explainable artificial intelligence: Advances in theory, applications and trends |
author |
Górriz, J. M. |
author_facet |
Górriz, J. M. Álvarez-Illán, I. Álvarez-Marquina, A. Arco, J. E. Atzmueller, M. Ballarini, F. Barakova, E. Bologna, G. Bonomini, P. Castellanos-Dominguez, G. Castillo-Barnes, D. Cho, S. B. Contreras, R. Cuadra, J. M. Domínguez, E. Domínguez-Mateos, F. Duro, R. J. Elizondo, D. Fernández-Caballero, A. Fernandez-Jover, E. Formoso, M. A. Gallego-Molina, N. J. Gamazo, J. González, J. García Garcia-Rodriguez, J. Garre, C. Garrigós, J. Gómez-Rodellar, A. Gómez-Vilda, P. Graña, M. Guerrero-Rodriguez, B. Hendrikse, S. C. F. Jimenez-Mesa, C. Jodra-Chuan, M. Julian, V. Kotz, G. Kutt, K. Leming, M. de Lope, J. Macas, B. Marrero-Aguiar, V. Martinez, J. J. Martinez-Murcia, F. J. Martínez-Tomás, R. Mekyska, J. Nalepa, G. J. Novais, Paulo Orellana, D. Ortiz, A. Palacios-Alonso, D. Palma, J. ATLAS Collaboration |
author_role |
author |
author2 |
Álvarez-Illán, I. Álvarez-Marquina, A. Arco, J. E. Atzmueller, M. Ballarini, F. Barakova, E. Bologna, G. Bonomini, P. Castellanos-Dominguez, G. Castillo-Barnes, D. Cho, S. B. Contreras, R. Cuadra, J. M. Domínguez, E. Domínguez-Mateos, F. Duro, R. J. Elizondo, D. Fernández-Caballero, A. Fernandez-Jover, E. Formoso, M. A. Gallego-Molina, N. J. Gamazo, J. González, J. García Garcia-Rodriguez, J. Garre, C. Garrigós, J. Gómez-Rodellar, A. Gómez-Vilda, P. Graña, M. Guerrero-Rodriguez, B. Hendrikse, S. C. F. Jimenez-Mesa, C. Jodra-Chuan, M. Julian, V. Kotz, G. Kutt, K. Leming, M. de Lope, J. Macas, B. Marrero-Aguiar, V. Martinez, J. J. Martinez-Murcia, F. J. Martínez-Tomás, R. Mekyska, J. Nalepa, G. J. Novais, Paulo Orellana, D. Ortiz, A. Palacios-Alonso, D. Palma, J. ATLAS Collaboration |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Górriz, J. M. Álvarez-Illán, I. Álvarez-Marquina, A. Arco, J. E. Atzmueller, M. Ballarini, F. Barakova, E. Bologna, G. Bonomini, P. Castellanos-Dominguez, G. Castillo-Barnes, D. Cho, S. B. Contreras, R. Cuadra, J. M. Domínguez, E. Domínguez-Mateos, F. Duro, R. J. Elizondo, D. Fernández-Caballero, A. Fernandez-Jover, E. Formoso, M. A. Gallego-Molina, N. J. Gamazo, J. González, J. García Garcia-Rodriguez, J. Garre, C. Garrigós, J. Gómez-Rodellar, A. Gómez-Vilda, P. Graña, M. Guerrero-Rodriguez, B. Hendrikse, S. C. F. Jimenez-Mesa, C. Jodra-Chuan, M. Julian, V. Kotz, G. Kutt, K. Leming, M. de Lope, J. Macas, B. Marrero-Aguiar, V. Martinez, J. J. Martinez-Murcia, F. J. Martínez-Tomás, R. Mekyska, J. Nalepa, G. J. Novais, Paulo Orellana, D. Ortiz, A. Palacios-Alonso, D. Palma, J. ATLAS Collaboration |
dc.subject.por.fl_str_mv |
Biomedical applications Computational approaches Computer-aided diagnosis systems Data science Deep learning Explainable artificial intelligence Machine learning Neuroscience Robotics |
topic |
Biomedical applications Computational approaches Computer-aided diagnosis systems Data science Deep learning Explainable artificial intelligence Machine learning Neuroscience Robotics |
description |
Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9th International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-01 2023-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/89841 |
url |
https://hdl.handle.net/1822/89841 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Górriz, J. M., Álvarez-Illán, I., Álvarez-Marquina, A., Arco, J. E., Atzmueller, M., Ballarini, F., … Ferrández-Vicente, J. M. (2023, December). Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends. Information Fusion. Elsevier BV. http://doi.org/10.1016/j.inffus.2023.101945 1566-2535 10.1016/j.inffus.2023.101945 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595265002504192 |