Modeling and simulation of biomass pyrolysis processes

Bibliographic Details
Main Author: Maldonado, Pedro
Publication Date: 2022
Other Authors: Lenzi, Giane G., Gomes, Helder, Brito, Paulo
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/26654
Summary: Pyrolysis is a thermochemical process where organic matter is decomposed into gaseous products, oils constituted by tars, and non-volatilized residual char, through the elevation of the system temperature (400-800°C), in the absence of oxygen. This process can be modeled and simulated for deeper analysis and optimization. However, since the process is clearly influenced by a high number of operational parameters such as temperature, pressure and dozens of simultaneous parallel reactions, its simulation becomes significantly complex. Thus, the aim of this work is the modeling of a more robust pyrolysis process, considering more components present in tar composition, as well as the evaluation of pyrolysis products distribution under different pyrolysis temperatures: 400, 500 and 600°C. Hence, a model was developed based on second-order equations [1], using pyrolysis temperature as the main variable, achieving as result the yield of three macro components: gases, tar and residual char. The gas fraction is composed by: carbon monoxide (CO), carbon dioxide (CO2), methane (CH4) and hydrogen (H2); tar fraction is constituted by: benzene (C6H6), toluene (C7H8) and naphthalene (C10H8), and the residual char is accompanied by ash in its composition. Simulation was implemented using biomass data based on the composition of olive residues applying the chemical process simulation software UniSim Design. The modeling first step is biomass decomposition in a conversion reactor, applying the yields obtained using the previous equations, while the second step is the decomposition of residual char in a yield reactor, resulting in the elemental constituents: carbon (C(s)), hydrogen gas (H2), oxygen gas (O2), nitrogen gas (N2), solid sulfur (S(s)), and ash. It is possible to note that the pyrolysis model results (see Table 1), implemented with the Software UniSim Design, show, in general, compatibility with the results available in the literature [2, 3]. The model reveals low sensitivity for the yield results, when using different sources of biomass with similar compositions, possibly due to the use of the temperature as the main variable
id RCAP_1f288b32e2dae79574e4ebb07726f860
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/26654
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Modeling and simulation of biomass pyrolysis processesBiomassResearch Subject Categories::TECHNOLOGYPyrolysis is a thermochemical process where organic matter is decomposed into gaseous products, oils constituted by tars, and non-volatilized residual char, through the elevation of the system temperature (400-800°C), in the absence of oxygen. This process can be modeled and simulated for deeper analysis and optimization. However, since the process is clearly influenced by a high number of operational parameters such as temperature, pressure and dozens of simultaneous parallel reactions, its simulation becomes significantly complex. Thus, the aim of this work is the modeling of a more robust pyrolysis process, considering more components present in tar composition, as well as the evaluation of pyrolysis products distribution under different pyrolysis temperatures: 400, 500 and 600°C. Hence, a model was developed based on second-order equations [1], using pyrolysis temperature as the main variable, achieving as result the yield of three macro components: gases, tar and residual char. The gas fraction is composed by: carbon monoxide (CO), carbon dioxide (CO2), methane (CH4) and hydrogen (H2); tar fraction is constituted by: benzene (C6H6), toluene (C7H8) and naphthalene (C10H8), and the residual char is accompanied by ash in its composition. Simulation was implemented using biomass data based on the composition of olive residues applying the chemical process simulation software UniSim Design. The modeling first step is biomass decomposition in a conversion reactor, applying the yields obtained using the previous equations, while the second step is the decomposition of residual char in a yield reactor, resulting in the elemental constituents: carbon (C(s)), hydrogen gas (H2), oxygen gas (O2), nitrogen gas (N2), solid sulfur (S(s)), and ash. It is possible to note that the pyrolysis model results (see Table 1), implemented with the Software UniSim Design, show, in general, compatibility with the results available in the literature [2, 3]. The model reveals low sensitivity for the yield results, when using different sources of biomass with similar compositions, possibly due to the use of the temperature as the main variableThis work is funded by the Portuguese Foundation of Science and Technology (FCT) within the framework of the SUBe Project, ref.: PCIF/GVB/0197/2017. The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2021Universidade de Santiago de CompustelaBiblioteca Digital do IPBMaldonado, PedroLenzi, Giane G.Gomes, HelderBrito, Paulo2023-01-24T09:26:56Z20222022-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/26654engMaldonado, Pedro; Lenzi, Giane G.; Gomes, Helder; Brito, Paulo (2022). Modeling and simulation of biomass pyrolysis processes. In XXVI Encontro Galego-Portugues de Química: Book of Abstracts. Santiago de Compostela978-84-09-45895-0info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:17:39Zoai:bibliotecadigital.ipb.pt:10198/26654Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:45:05.975445Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Modeling and simulation of biomass pyrolysis processes
title Modeling and simulation of biomass pyrolysis processes
spellingShingle Modeling and simulation of biomass pyrolysis processes
Maldonado, Pedro
Biomass
Research Subject Categories::TECHNOLOGY
title_short Modeling and simulation of biomass pyrolysis processes
title_full Modeling and simulation of biomass pyrolysis processes
title_fullStr Modeling and simulation of biomass pyrolysis processes
title_full_unstemmed Modeling and simulation of biomass pyrolysis processes
title_sort Modeling and simulation of biomass pyrolysis processes
author Maldonado, Pedro
author_facet Maldonado, Pedro
Lenzi, Giane G.
Gomes, Helder
Brito, Paulo
author_role author
author2 Lenzi, Giane G.
Gomes, Helder
Brito, Paulo
author2_role author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Maldonado, Pedro
Lenzi, Giane G.
Gomes, Helder
Brito, Paulo
dc.subject.por.fl_str_mv Biomass
Research Subject Categories::TECHNOLOGY
topic Biomass
Research Subject Categories::TECHNOLOGY
description Pyrolysis is a thermochemical process where organic matter is decomposed into gaseous products, oils constituted by tars, and non-volatilized residual char, through the elevation of the system temperature (400-800°C), in the absence of oxygen. This process can be modeled and simulated for deeper analysis and optimization. However, since the process is clearly influenced by a high number of operational parameters such as temperature, pressure and dozens of simultaneous parallel reactions, its simulation becomes significantly complex. Thus, the aim of this work is the modeling of a more robust pyrolysis process, considering more components present in tar composition, as well as the evaluation of pyrolysis products distribution under different pyrolysis temperatures: 400, 500 and 600°C. Hence, a model was developed based on second-order equations [1], using pyrolysis temperature as the main variable, achieving as result the yield of three macro components: gases, tar and residual char. The gas fraction is composed by: carbon monoxide (CO), carbon dioxide (CO2), methane (CH4) and hydrogen (H2); tar fraction is constituted by: benzene (C6H6), toluene (C7H8) and naphthalene (C10H8), and the residual char is accompanied by ash in its composition. Simulation was implemented using biomass data based on the composition of olive residues applying the chemical process simulation software UniSim Design. The modeling first step is biomass decomposition in a conversion reactor, applying the yields obtained using the previous equations, while the second step is the decomposition of residual char in a yield reactor, resulting in the elemental constituents: carbon (C(s)), hydrogen gas (H2), oxygen gas (O2), nitrogen gas (N2), solid sulfur (S(s)), and ash. It is possible to note that the pyrolysis model results (see Table 1), implemented with the Software UniSim Design, show, in general, compatibility with the results available in the literature [2, 3]. The model reveals low sensitivity for the yield results, when using different sources of biomass with similar compositions, possibly due to the use of the temperature as the main variable
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-01-24T09:26:56Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/26654
url http://hdl.handle.net/10198/26654
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Maldonado, Pedro; Lenzi, Giane G.; Gomes, Helder; Brito, Paulo (2022). Modeling and simulation of biomass pyrolysis processes. In XXVI Encontro Galego-Portugues de Química: Book of Abstracts. Santiago de Compostela
978-84-09-45895-0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Santiago de Compustela
publisher.none.fl_str_mv Universidade de Santiago de Compustela
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592207690432512