Export Ready — 

Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach

Bibliographic Details
Main Author: Pereira, L.S.
Publication Date: 2020
Other Authors: Paredes, Paula, Jovanovic, N.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.5/21807
Summary: This study reviews soil water balance (SWB) model approaches to determine crop irrigation requirements and scheduling irrigation adopting the FAO56 method. The Kc-ETo approach is discussed with consideration of baseline concepts namely standard vs. actual Kc concepts, as well as single and dual Kc approaches. Requirements for accurate SWB and appropriate parameterization and calibration are introduced. The one-step vs. the two-step computational approaches is discussed before the review of the FAO56 method to compute and partition crop evapotranspiration and related soil water balance. A brief review on transient state models is also included. Baseline information is concluded with a discussion on yields prediction and performance indicators related to water productivity. The study is continued with an overview on models development and use after publication of FAO24, essentially single Kc models, followed by a review on models following FAO56, particularly adopting the dual Kc approach. Features of dual Kc modeling approaches are analyzed through a few applications of the SWB model SIMDualKc, mainly for derivation of basal and single Kc, extending the basal Kc approach to relay intercrop cultivation, assessing alternative planting dates, determining beneficial and nonbeneficial uses of water by an irrigated crop, and assessing the groundwater contribution to crop ET in the presence of a shallow water table. The review finally discusses the challenges placed to SWB modeling for real time irrigation scheduling, particularly the new modeling approaches for large scale multi-users application, use of cloud computing and adopting the internet of things (IoT), as well as an improved wireless association of modeling with soil and plant sensors. Further challenges refer to the use of remote sensing energy balance and vegetation indices to map Kc, ET and crop water and irrigation requirements. Trends are expected to change research issues relative to SWB modeling, with traditional models mainly used for research while new, fastresponding and multi-users models based on cloud and IoT technologies will develop into applications to the farm practice. Likely, the Kc-ETo will continue to be used, with ETo from gridded networks, re-analysis and other sources, and Kc data available in real time from large databases and remote sensing
id RCAP_1edead5257c3936a8df6f655a312e9ad
oai_identifier_str oai:repositorio.ulisboa.pt:10400.5/21807
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approachcrop coefficientscrop evapotranspirationdual Kc approachreal time irrigation managementwater use assessmentSIMDualKc modelThis study reviews soil water balance (SWB) model approaches to determine crop irrigation requirements and scheduling irrigation adopting the FAO56 method. The Kc-ETo approach is discussed with consideration of baseline concepts namely standard vs. actual Kc concepts, as well as single and dual Kc approaches. Requirements for accurate SWB and appropriate parameterization and calibration are introduced. The one-step vs. the two-step computational approaches is discussed before the review of the FAO56 method to compute and partition crop evapotranspiration and related soil water balance. A brief review on transient state models is also included. Baseline information is concluded with a discussion on yields prediction and performance indicators related to water productivity. The study is continued with an overview on models development and use after publication of FAO24, essentially single Kc models, followed by a review on models following FAO56, particularly adopting the dual Kc approach. Features of dual Kc modeling approaches are analyzed through a few applications of the SWB model SIMDualKc, mainly for derivation of basal and single Kc, extending the basal Kc approach to relay intercrop cultivation, assessing alternative planting dates, determining beneficial and nonbeneficial uses of water by an irrigated crop, and assessing the groundwater contribution to crop ET in the presence of a shallow water table. The review finally discusses the challenges placed to SWB modeling for real time irrigation scheduling, particularly the new modeling approaches for large scale multi-users application, use of cloud computing and adopting the internet of things (IoT), as well as an improved wireless association of modeling with soil and plant sensors. Further challenges refer to the use of remote sensing energy balance and vegetation indices to map Kc, ET and crop water and irrigation requirements. Trends are expected to change research issues relative to SWB modeling, with traditional models mainly used for research while new, fastresponding and multi-users models based on cloud and IoT technologies will develop into applications to the farm practice. Likely, the Kc-ETo will continue to be used, with ETo from gridded networks, re-analysis and other sources, and Kc data available in real time from large databases and remote sensingElsevierRepositório da Universidade de LisboaPereira, L.S.Paredes, PaulaJovanovic, N.2021-09-14T10:30:58Z20202020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/21807engAgricultural Water Management 241 (2020) 106357https://doi.org/10.1016/j.agwat.2020.106357info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T16:12:18Zoai:repositorio.ulisboa.pt:10400.5/21807Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T04:05:52.308151Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
title Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
spellingShingle Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
Pereira, L.S.
crop coefficients
crop evapotranspiration
dual Kc approach
real time irrigation management
water use assessment
SIMDualKc model
title_short Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
title_full Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
title_fullStr Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
title_full_unstemmed Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
title_sort Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach
author Pereira, L.S.
author_facet Pereira, L.S.
Paredes, Paula
Jovanovic, N.
author_role author
author2 Paredes, Paula
Jovanovic, N.
author2_role author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Pereira, L.S.
Paredes, Paula
Jovanovic, N.
dc.subject.por.fl_str_mv crop coefficients
crop evapotranspiration
dual Kc approach
real time irrigation management
water use assessment
SIMDualKc model
topic crop coefficients
crop evapotranspiration
dual Kc approach
real time irrigation management
water use assessment
SIMDualKc model
description This study reviews soil water balance (SWB) model approaches to determine crop irrigation requirements and scheduling irrigation adopting the FAO56 method. The Kc-ETo approach is discussed with consideration of baseline concepts namely standard vs. actual Kc concepts, as well as single and dual Kc approaches. Requirements for accurate SWB and appropriate parameterization and calibration are introduced. The one-step vs. the two-step computational approaches is discussed before the review of the FAO56 method to compute and partition crop evapotranspiration and related soil water balance. A brief review on transient state models is also included. Baseline information is concluded with a discussion on yields prediction and performance indicators related to water productivity. The study is continued with an overview on models development and use after publication of FAO24, essentially single Kc models, followed by a review on models following FAO56, particularly adopting the dual Kc approach. Features of dual Kc modeling approaches are analyzed through a few applications of the SWB model SIMDualKc, mainly for derivation of basal and single Kc, extending the basal Kc approach to relay intercrop cultivation, assessing alternative planting dates, determining beneficial and nonbeneficial uses of water by an irrigated crop, and assessing the groundwater contribution to crop ET in the presence of a shallow water table. The review finally discusses the challenges placed to SWB modeling for real time irrigation scheduling, particularly the new modeling approaches for large scale multi-users application, use of cloud computing and adopting the internet of things (IoT), as well as an improved wireless association of modeling with soil and plant sensors. Further challenges refer to the use of remote sensing energy balance and vegetation indices to map Kc, ET and crop water and irrigation requirements. Trends are expected to change research issues relative to SWB modeling, with traditional models mainly used for research while new, fastresponding and multi-users models based on cloud and IoT technologies will develop into applications to the farm practice. Likely, the Kc-ETo will continue to be used, with ETo from gridded networks, re-analysis and other sources, and Kc data available in real time from large databases and remote sensing
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
2021-09-14T10:30:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/21807
url http://hdl.handle.net/10400.5/21807
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Agricultural Water Management 241 (2020) 106357
https://doi.org/10.1016/j.agwat.2020.106357
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601940272971776