Investigating impacts of complex sampling on latent growth curve modelling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10071/12143 |
Resumo: | We investigate the impacts of complex sampling on point and standard error estimates in latent growth curve modelling of survey data. Methodological issues are illustrated with empirical evidence from the analysis of longitudinal data on life satisfaction trajectories using data from the British Household Panel Survey, a national representative survey in Great Britain. A multi-process second-order latent growth curve model with conditional linear growth is used to study variation in the two perceived life satisfaction latent factors considered. The benefits of accounting for the complex survey design are considered, including obtaining unbiased both point and standard error estimates, and therefore correctly specified confidence intervals and statistical tests. We conclude that, even for the rather elaborated longitudinal data models that were considered, estimation procedures are affected by variance-inflating impacts of complex sampling. |
id |
RCAP_1d2405387903496ee05a6e890e41c11a |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/12143 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Investigating impacts of complex sampling on latent growth curve modellingComplex samplingLatent growth curve modelsLongitudinal dataMisspecification effectsBHPSWe investigate the impacts of complex sampling on point and standard error estimates in latent growth curve modelling of survey data. Methodological issues are illustrated with empirical evidence from the analysis of longitudinal data on life satisfaction trajectories using data from the British Household Panel Survey, a national representative survey in Great Britain. A multi-process second-order latent growth curve model with conditional linear growth is used to study variation in the two perceived life satisfaction latent factors considered. The benefits of accounting for the complex survey design are considered, including obtaining unbiased both point and standard error estimates, and therefore correctly specified confidence intervals and statistical tests. We conclude that, even for the rather elaborated longitudinal data models that were considered, estimation procedures are affected by variance-inflating impacts of complex sampling.Routledge/Taylor and Francis2016-12-05T14:45:05Z2016-01-01T00:00:00Z20162019-04-09T11:28:26Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/12143eng0266-476310.1080/02664763.2015.1100590Vieira, M. D. T.Salgueiro, M. F.Smith, P. W. F.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:44:39Zoai:repositorio.iscte-iul.pt:10071/12143Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:05:45.864036Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Investigating impacts of complex sampling on latent growth curve modelling |
title |
Investigating impacts of complex sampling on latent growth curve modelling |
spellingShingle |
Investigating impacts of complex sampling on latent growth curve modelling Vieira, M. D. T. Complex sampling Latent growth curve models Longitudinal data Misspecification effects BHPS |
title_short |
Investigating impacts of complex sampling on latent growth curve modelling |
title_full |
Investigating impacts of complex sampling on latent growth curve modelling |
title_fullStr |
Investigating impacts of complex sampling on latent growth curve modelling |
title_full_unstemmed |
Investigating impacts of complex sampling on latent growth curve modelling |
title_sort |
Investigating impacts of complex sampling on latent growth curve modelling |
author |
Vieira, M. D. T. |
author_facet |
Vieira, M. D. T. Salgueiro, M. F. Smith, P. W. F. |
author_role |
author |
author2 |
Salgueiro, M. F. Smith, P. W. F. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vieira, M. D. T. Salgueiro, M. F. Smith, P. W. F. |
dc.subject.por.fl_str_mv |
Complex sampling Latent growth curve models Longitudinal data Misspecification effects BHPS |
topic |
Complex sampling Latent growth curve models Longitudinal data Misspecification effects BHPS |
description |
We investigate the impacts of complex sampling on point and standard error estimates in latent growth curve modelling of survey data. Methodological issues are illustrated with empirical evidence from the analysis of longitudinal data on life satisfaction trajectories using data from the British Household Panel Survey, a national representative survey in Great Britain. A multi-process second-order latent growth curve model with conditional linear growth is used to study variation in the two perceived life satisfaction latent factors considered. The benefits of accounting for the complex survey design are considered, including obtaining unbiased both point and standard error estimates, and therefore correctly specified confidence intervals and statistical tests. We conclude that, even for the rather elaborated longitudinal data models that were considered, estimation procedures are affected by variance-inflating impacts of complex sampling. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-05T14:45:05Z 2016-01-01T00:00:00Z 2016 2019-04-09T11:28:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/12143 |
url |
http://hdl.handle.net/10071/12143 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0266-4763 10.1080/02664763.2015.1100590 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Routledge/Taylor and Francis |
publisher.none.fl_str_mv |
Routledge/Taylor and Francis |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597184210108416 |